Gelecek Trendleri & Yeni Teknolojiler
5G Entegrasyonu
Ağ Yetenekleri
5G teknolojisi mobile networking'de devrim niteliğinde değişiklikler getiriyor.
Ultra-Düşük Gecikme
javascript
class FiveGOptimizedNetworking {
constructor() {
this.networkInfo = this.detectNetworkCapabilities();
this.adaptToNetwork();
}
detectNetworkCapabilities() {
if ('connection' in navigator) {
const connection = navigator.connection;
return {
effectiveType: connection.effectiveType,
downlink: connection.downlink,
rtt: connection.rtt,
saveData: connection.saveData,
type: connection.type
};
}
return null;
}
adaptToNetwork() {
if (!this.networkInfo) return;
switch (this.networkInfo.effectiveType) {
case '5g':
this.enable5GFeatures();
break;
case '4g':
this.enable4GOptimizations();
break;
case '3g':
this.enableConservativeMode();
break;
default:
this.enableBasicMode();
}
}
enable5GFeatures() {
// Ultra-low latency features
this.enableRealTimeFeatures();
this.enableHighBandwidthContent();
this.enableEdgeComputing();
console.log('5G mode: Enabling advanced features');
}
enableRealTimeFeatures() {
// Real-time collaborative features
this.webSocketConfig = {
heartbeatInterval: 1000, // 1 second for 5G
reconnectDelay: 100,
maxReconnectAttempts: 10
};
// AR/VR support
this.enableARVRStreaming();
// Real-time gaming
this.enableLowLatencyGaming();
}
enableHighBandwidthContent() {
// 4K/8K video streaming
this.videoQuality = '4k';
this.enableHighResolutionImages();
// Bulk data transfers
this.enableLargeFileTransfers();
// High-quality audio
this.enableLosslessAudio();
}
enableEdgeComputing() {
// Edge server selection
this.selectNearestEdgeServer();
// Local processing
this.enableEdgeProcessing();
// Reduced round trips
this.enableLocalCache();
}
async selectNearestEdgeServer() {
try {
// 5G network slicing için optimal edge server seçimi
const edgeServers = await this.discoverEdgeServers();
const optimalServer = await this.selectOptimalEdge(edgeServers);
this.edgeEndpoint = optimalServer;
console.log(`Connected to edge server: ${optimalServer.location}`);
} catch (error) {
console.error('Edge server selection failed:', error);
this.fallbackToCloudServer();
}
}
async discoverEdgeServers() {
const response = await fetch('/api/edge/discover', {
headers: {
'X-Network-Info': JSON.stringify(this.networkInfo)
}
});
return await response.json();
}
async selectOptimalEdge(servers) {
// Latency-based selection
const latencyTests = servers.map(async server => {
const start = performance.now();
try {
await fetch(`${server.endpoint}/ping`, {
method: 'HEAD',
cache: 'no-cache'
});
const latency = performance.now() - start;
return { server, latency };
} catch (error) {
return { server, latency: Infinity };
}
});
const results = await Promise.all(latencyTests);
results.sort((a, b) => a.latency - b.latency);
return results[0].server;
}
}
High Bandwidth Utilization
javascript
class HighBandwidthManager {
constructor() {
this.bandwidthEstimate = 0;
this.adaptiveStreaming = new AdaptiveStreamingManager();
}
async measureBandwidth() {
const testSizes = [100, 500, 1000, 5000]; // KB
const results = [];
for (const size of testSizes) {
const speed = await this.downloadSpeedTest(size);
results.push(speed);
}
// Use median to avoid outliers
results.sort((a, b) => a - b);
this.bandwidthEstimate = results[Math.floor(results.length / 2)];
this.adaptContentDelivery();
}
async downloadSpeedTest(sizeKB) {
const start = performance.now();
try {
const response = await fetch(`/api/speedtest/${sizeKB}kb`);
await response.blob();
const end = performance.now();
const duration = (end - start) / 1000; // seconds
const speed = (sizeKB * 8) / duration; // kbps
return speed;
} catch (error) {
console.error('Speed test failed:', error);
return 0;
}
}
adaptContentDelivery() {
if (this.bandwidthEstimate > 50000) { // >50 Mbps (5G typical)
this.enableUltraHighQuality();
} else if (this.bandwidthEstimate > 10000) { // >10 Mbps (4G good)
this.enableHighQuality();
} else {
this.enableStandardQuality();
}
}
enableUltraHighQuality() {
this.adaptiveStreaming.setQuality({
video: '4k',
audio: 'lossless',
images: 'uncompressed',
prefetch: 'aggressive'
});
}
enableHighQuality() {
this.adaptiveStreaming.setQuality({
video: '1080p',
audio: 'high',
images: 'high',
prefetch: 'moderate'
});
}
enableStandardQuality() {
this.adaptiveStreaming.setQuality({
video: '720p',
audio: 'standard',
images: 'compressed',
prefetch: 'conservative'
});
}
}
Network Slicing
javascript
class NetworkSlicingManager {
constructor() {
this.slices = {
realtime: { priority: 'high', latency: 'ultra-low' },
streaming: { priority: 'medium', bandwidth: 'high' },
background: { priority: 'low', efficiency: 'high' }
};
}
requestNetworkSlice(sliceType, requirements) {
const slice = this.slices[sliceType];
if (!slice) {
throw new Error(`Unknown slice type: ${sliceType}`);
}
return this.negotiateSlice(slice, requirements);
}
async negotiateSlice(slice, requirements) {
try {
const response = await fetch('/api/network/slice', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({
slice,
requirements,
deviceId: this.getDeviceId(),
location: await this.getLocation()
})
});
if (response.ok) {
const sliceInfo = await response.json();
return this.configureSlice(sliceInfo);
} else {
throw new Error('Slice negotiation failed');
}
} catch (error) {
console.error('Network slicing error:', error);
return this.fallbackConfiguration();
}
}
configureSlice(sliceInfo) {
return {
sliceId: sliceInfo.id,
endpoint: sliceInfo.endpoint,
qosParams: sliceInfo.qos,
expiresAt: sliceInfo.expiresAt
};
}
fallbackConfiguration() {
return {
sliceId: null,
endpoint: '/api',
qosParams: { priority: 'best-effort' },
expiresAt: null
};
}
}
Edge Computing
Edge Processing
Edge computing, veriyi kullanıcıya daha yakın noktlarda işleyerek latency'yi azaltır.
Local Computation
javascript
class EdgeComputingManager {
constructor() {
this.edgeNodes = [];
this.localProcessor = new LocalProcessor();
this.cloudFallback = new CloudFallback();
}
async processData(data, processingType) {
// Önce local processing'i dene
if (this.canProcessLocally(processingType)) {
try {
return await this.localProcessor.process(data, processingType);
} catch (error) {
console.warn('Local processing failed, trying edge:', error);
}
}
// Edge node'da processing
if (this.hasAvailableEdgeNode()) {
try {
return await this.processAtEdge(data, processingType);
} catch (error) {
console.warn('Edge processing failed, falling back to cloud:', error);
}
}
// Cloud fallback
return await this.cloudFallback.process(data, processingType);
}
canProcessLocally(processingType) {
const localCapabilities = {
imageResize: true,
textAnalysis: true,
audioTranscode: false,
videoProcessing: false,
aiInference: this.hasLocalAI()
};
return localCapabilities[processingType] || false;
}
hasLocalAI() {
// WebAssembly veya WebGL desteği kontrolü
return typeof WebAssembly !== 'undefined' &&
this.localProcessor.hasAICapabilities();
}
async processAtEdge(data, processingType) {
const optimalEdge = await this.selectOptimalEdgeNode(processingType);
if (!optimalEdge) {
throw new Error('No suitable edge node available');
}
const response = await fetch(`${optimalEdge.endpoint}/process`, {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({
data,
type: processingType,
priority: this.calculatePriority(processingType)
})
});
if (!response.ok) {
throw new Error(`Edge processing failed: ${response.statusText}`);
}
return await response.json();
}
async selectOptimalEdgeNode(processingType) {
const suitableNodes = this.edgeNodes.filter(node =>
node.capabilities.includes(processingType) &&
node.status === 'available'
);
if (suitableNodes.length === 0) {
return null;
}
// Load balancing ve latency'ye göre seçim
const nodeScores = await Promise.all(
suitableNodes.map(async node => {
const latency = await this.measureLatency(node);
const load = await this.getNodeLoad(node);
// Lower score is better
const score = latency + (load * 100);
return { node, score };
})
);
nodeScores.sort((a, b) => a.score - b.score);
return nodeScores[0].node;
}
async measureLatency(node) {
const start = performance.now();
try {
await fetch(`${node.endpoint}/ping`, { method: 'HEAD' });
return performance.now() - start;
} catch (error) {
return Infinity;
}
}
async getNodeLoad(node) {
try {
const response = await fetch(`${node.endpoint}/status`);
const status = await response.json();
return status.load || 1.0;
} catch (error) {
return 1.0; // Assume full load on error
}
}
}
class LocalProcessor {
constructor() {
this.workers = new Map();
this.aiModel = null;
}
hasAICapabilities() {
return this.aiModel !== null || this.canLoadAIModel();
}
canLoadAIModel() {
// WebAssembly ve WebGL desteği kontrolü
return typeof WebAssembly !== 'undefined' &&
typeof WebGLRenderingContext !== 'undefined';
}
async process(data, type) {
switch (type) {
case 'imageResize':
return this.resizeImage(data);
case 'textAnalysis':
return this.analyzeText(data);
case 'aiInference':
return this.runAIInference(data);
default:
throw new Error(`Unsupported processing type: ${type}`);
}
}
async resizeImage(imageData) {
return new Promise((resolve, reject) => {
const worker = new Worker('/workers/imageProcessor.js');
worker.postMessage({
type: 'resize',
data: imageData,
targetWidth: 800,
targetHeight: 600
});
worker.onmessage = (event) => {
resolve(event.data);
worker.terminate();
};
worker.onerror = (error) => {
reject(error);
worker.terminate();
};
});
}
async analyzeText(text) {
// Simple local text analysis
return {
wordCount: text.split(' ').length,
characterCount: text.length,
sentiment: this.basicSentimentAnalysis(text),
keywords: this.extractKeywords(text)
};
}
basicSentimentAnalysis(text) {
const positiveWords = ['good', 'great', 'excellent', 'amazing', 'wonderful'];
const negativeWords = ['bad', 'terrible', 'awful', 'horrible', 'disappointing'];
const words = text.toLowerCase().split(' ');
let score = 0;
words.forEach(word => {
if (positiveWords.includes(word)) score++;
if (negativeWords.includes(word)) score--;
});
if (score > 0) return 'positive';
if (score < 0) return 'negative';
return 'neutral';
}
extractKeywords(text) {
const stopWords = ['the', 'is', 'at', 'which', 'on', 'and', 'a', 'to', 'as'];
const words = text.toLowerCase()
.replace(/[^\w\s]/g, '')
.split(' ')
.filter(word => word.length > 3 && !stopWords.includes(word));
const frequency = {};
words.forEach(word => {
frequency[word] = (frequency[word] || 0) + 1;
});
return Object.entries(frequency)
.sort((a, b) => b[1] - a[1])
.slice(0, 5)
.map(([word]) => word);
}
}
Data Synchronization
javascript
class EdgeDataSync {
constructor() {
this.localStore = new LocalDataStore();
this.edgeStore = new EdgeDataStore();
this.cloudStore = new CloudDataStore();
this.syncQueue = [];
}
async syncData(data, syncLevel = 'edge') {
// Local'e hemen kaydet
await this.localStore.save(data);
// Sync level'e göre stratejik sync
switch (syncLevel) {
case 'local':
// Sadece local
break;
case 'edge':
await this.syncToEdge(data);
break;
case 'cloud':
await this.syncToCloud(data);
break;
case 'all':
await Promise.all([
this.syncToEdge(data),
this.syncToCloud(data)
]);
break;
}
}
async syncToEdge(data) {
try {
await this.edgeStore.save(data);
// Background sync to cloud
this.queueCloudSync(data);
} catch (error) {
console.error('Edge sync failed:', error);
// Fallback to cloud sync
await this.syncToCloud(data);
}
}
async syncToCloud(data) {
try {
await this.cloudStore.save(data);
} catch (error) {
console.error('Cloud sync failed:', error);
// Queue for retry
this.queueCloudSync(data);
}
}
queueCloudSync(data) {
this.syncQueue.push({
data,
timestamp: Date.now(),
retries: 0
});
this.processSyncQueue();
}
async processSyncQueue() {
if (this.syncQueue.length === 0) return;
const item = this.syncQueue.shift();
try {
await this.cloudStore.save(item.data);
} catch (error) {
if (item.retries < 3) {
item.retries++;
this.syncQueue.push(item);
} else {
console.error('Max retries reached for sync item:', item);
}
}
// Process next item
if (this.syncQueue.length > 0) {
setTimeout(() => this.processSyncQueue(), 1000);
}
}
async resolveConflicts(localData, edgeData, cloudData) {
// Timestamp-based conflict resolution
const candidates = [
{ data: localData, timestamp: localData.updatedAt, source: 'local' },
{ data: edgeData, timestamp: edgeData.updatedAt, source: 'edge' },
{ data: cloudData, timestamp: cloudData.updatedAt, source: 'cloud' }
].filter(item => item.data && item.timestamp);
if (candidates.length === 0) return null;
// Sort by timestamp (newest first)
candidates.sort((a, b) => b.timestamp - a.timestamp);
const winner = candidates[0];
// Propagate winning version to other stores
await this.propagateWinner(winner);
return winner.data;
}
async propagateWinner(winner) {
const promises = [];
if (winner.source !== 'local') {
promises.push(this.localStore.save(winner.data));
}
if (winner.source !== 'edge') {
promises.push(this.edgeStore.save(winner.data));
}
if (winner.source !== 'cloud') {
promises.push(this.cloudStore.save(winner.data));
}
await Promise.allSettled(promises);
}
}
AI/ML Integration
Network Optimization
AI ve ML, network behavior'ını öğrenerek optimize eder.
Predictive Loading
javascript
class PredictiveLoader {
constructor() {
this.userBehaviorModel = new UserBehaviorModel();
this.prefetchCache = new Map();
this.learningEnabled = true;
}
async predictAndPrefetch(currentContext) {
if (!this.learningEnabled) return;
const predictions = await this.userBehaviorModel.predict(currentContext);
// High confidence predictions için prefetch
const highConfidencePredictions = predictions.filter(p => p.confidence > 0.7);
await Promise.all(
highConfidencePredictions.map(prediction =>
this.prefetchResource(prediction)
)
);
}
async prefetchResource(prediction) {
if (this.prefetchCache.has(prediction.resource)) {
return; // Already prefetched
}
try {
const response = await fetch(prediction.resource, {
method: 'GET',
headers: { 'X-Prefetch': 'true' },
priority: 'low' // Background prefetch
});
if (response.ok) {
const data = await response.blob();
this.prefetchCache.set(prediction.resource, {
data,
timestamp: Date.now(),
prediction
});
console.log(`Prefetched: ${prediction.resource} (confidence: ${prediction.confidence})`);
}
} catch (error) {
console.warn('Prefetch failed:', prediction.resource, error);
}
}
learnFromUserAction(action, context) {
if (!this.learningEnabled) return;
this.userBehaviorModel.addTrainingData({
action,
context,
timestamp: Date.now()
});
// Validate prediction accuracy
this.validatePredictions(action);
}
validatePredictions(actualAction) {
// Check if we correctly predicted this action
const recentPredictions = Array.from(this.prefetchCache.values())
.filter(item => Date.now() - item.timestamp < 60000); // Last minute
const correctPrediction = recentPredictions.find(item =>
item.prediction.resource === actualAction.resource
);
if (correctPrediction) {
this.userBehaviorModel.recordSuccess(correctPrediction.prediction);
} else {
this.userBehaviorModel.recordMiss(actualAction);
}
}
getPrefetchedResource(resource) {
const cached = this.prefetchCache.get(resource);
if (cached && this.isCacheValid(cached)) {
this.prefetchCache.delete(resource); // Use once
return cached.data;
}
return null;
}
isCacheValid(cached) {
const TTL = 300000; // 5 minutes
return Date.now() - cached.timestamp < TTL;
}
}
class UserBehaviorModel {
constructor() {
this.trainingData = [];
this.model = null;
this.patterns = new Map();
}
async predict(context) {
// Simple pattern-based prediction
const contextKey = this.getContextKey(context);
const pattern = this.patterns.get(contextKey);
if (!pattern) {
return [];
}
// Return predictions based on learned patterns
return pattern.nextActions.map(action => ({
resource: action.resource,
confidence: action.frequency / pattern.totalCount,
action
}));
}
addTrainingData(dataPoint) {
this.trainingData.push(dataPoint);
// Update patterns
this.updatePatterns(dataPoint);
// Retrain model periodically
if (this.trainingData.length % 100 === 0) {
this.retrainModel();
}
}
updatePatterns(dataPoint) {
const contextKey = this.getContextKey(dataPoint.context);
if (!this.patterns.has(contextKey)) {
this.patterns.set(contextKey, {
nextActions: [],
totalCount: 0
});
}
const pattern = this.patterns.get(contextKey);
// Update action frequency
const existingAction = pattern.nextActions.find(a =>
a.resource === dataPoint.action.resource
);
if (existingAction) {
existingAction.frequency++;
} else {
pattern.nextActions.push({
resource: dataPoint.action.resource,
frequency: 1,
...dataPoint.action
});
}
pattern.totalCount++;
}
getContextKey(context) {
// Create a simple context key
return `${context.page}_${context.timeOfDay}_${context.userType}`;
}
async retrainModel() {
// Simple retraining - in production, use TensorFlow.js or similar
console.log('Retraining model with', this.trainingData.length, 'data points');
// Cleanup old patterns
this.cleanupOldPatterns();
}
cleanupOldPatterns() {
// Remove patterns with low confidence
for (const [key, pattern] of this.patterns.entries()) {
if (pattern.totalCount < 5) {
this.patterns.delete(key);
}
}
}
recordSuccess(prediction) {
// Increase confidence for successful predictions
console.log('Prediction success:', prediction.resource);
}
recordMiss(action) {
// Learn from missed predictions
console.log('Prediction miss:', action.resource);
}
}
Adaptive Compression
javascript
class AdaptiveCompressionManager {
constructor() {
this.compressionStrategies = new Map();
this.performanceMetrics = new Map();
this.aiOptimizer = new CompressionAI();
}
async compressData(data, contentType, context) {
const strategy = await this.selectOptimalStrategy(contentType, context);
const startTime = performance.now();
const compressedData = await this.applyCompression(data, strategy);
const endTime = performance.now();
// Record performance metrics
this.recordMetrics(strategy, {
originalSize: data.length,
compressedSize: compressedData.length,
compressionTime: endTime - startTime,
compressionRatio: compressedData.length / data.length
});
return compressedData;
}
async selectOptimalStrategy(contentType, context) {
// AI-based strategy selection
const recommendation = await this.aiOptimizer.recommendStrategy({
contentType,
context,
historicalData: this.getHistoricalMetrics(contentType)
});
if (recommendation.confidence > 0.8) {
return recommendation.strategy;
}
// Fallback to rule-based selection
return this.getRuleBasedStrategy(contentType, context);
}
async applyCompression(data, strategy) {
switch (strategy.algorithm) {
case 'gzip':
return await this.gzipCompress(data, strategy.level);
case 'brotli':
return await this.brotliCompress(data, strategy.level);
case 'lz4':
return await this.lz4Compress(data);
case 'webp':
return await this.webpCompress(data, strategy.quality);
case 'avif':
return await this.avifCompress(data, strategy.quality);
default:
throw new Error(`Unknown compression algorithm: ${strategy.algorithm}`);
}
}
async gzipCompress(data, level = 6) {
// Use CompressionStream API if available
if ('CompressionStream' in window) {
const stream = new CompressionStream('gzip');
const writer = stream.writable.getWriter();
const reader = stream.readable.getReader();
writer.write(new TextEncoder().encode(data));
writer.close();
const chunks = [];
let done = false;
while (!done) {
const { value, done: streamDone } = await reader.read();
done = streamDone;
if (value) chunks.push(value);
}
return new Uint8Array(chunks.reduce((acc, chunk) => [...acc, ...chunk], []));
}
// Fallback to Web Worker
return this.workerCompress(data, 'gzip', { level });
}
async webpCompress(imageData, quality = 80) {
return new Promise((resolve, reject) => {
const canvas = document.createElement('canvas');
const ctx = canvas.getContext('2d');
const img = new Image();
img.onload = () => {
canvas.width = img.width;
canvas.height = img.height;
ctx.drawImage(img, 0, 0);
canvas.toBlob(resolve, 'image/webp', quality / 100);
};
img.onerror = reject;
img.src = URL.createObjectURL(new Blob([imageData]));
});
}
recordMetrics(strategy, metrics) {
const key = strategy.algorithm;
if (!this.performanceMetrics.has(key)) {
this.performanceMetrics.set(key, []);
}
this.performanceMetrics.get(key).push({
...metrics,
timestamp: Date.now(),
strategy
});
// Feed data to AI optimizer
this.aiOptimizer.addTrainingData(strategy, metrics);
}
getHistoricalMetrics(contentType) {
const allMetrics = Array.from(this.performanceMetrics.values()).flat();
return allMetrics
.filter(metric => metric.strategy.contentType === contentType)
.slice(-100); // Last 100 operations
}
getRuleBasedStrategy(contentType, context) {
// Fallback rule-based strategy selection
switch (contentType) {
case 'text/html':
case 'text/css':
case 'application/javascript':
return { algorithm: 'gzip', level: 6 };
case 'image/jpeg':
case 'image/png':
return { algorithm: 'webp', quality: this.getImageQuality(context) };
case 'application/json':
return { algorithm: 'brotli', level: 4 };
default:
return { algorithm: 'gzip', level: 6 };
}
}
getImageQuality(context) {
if (context.networkSpeed === 'slow') return 60;
if (context.networkSpeed === 'fast') return 90;
return 75; // default
}
}
class CompressionAI {
constructor() {
this.trainingData = [];
this.model = null;
}
async recommendStrategy(input) {
// Simple heuristic-based recommendation
// In production, use TensorFlow.js or similar ML library
const { contentType, context, historicalData } = input;
if (historicalData.length === 0) {
return { strategy: null, confidence: 0 };
}
// Find best performing strategy for similar content
const relevantMetrics = historicalData
.filter(metric => metric.strategy.contentType === contentType)
.sort((a, b) => a.compressionRatio - b.compressionRatio); // Better compression first
if (relevantMetrics.length === 0) {
return { strategy: null, confidence: 0 };
}
const bestStrategy = relevantMetrics[0].strategy;
const confidence = Math.min(relevantMetrics.length / 10, 1.0); // More data = higher confidence
return { strategy: bestStrategy, confidence };
}
addTrainingData(strategy, metrics) {
this.trainingData.push({
input: strategy,
output: metrics,
timestamp: Date.now()
});
// Retrain periodically
if (this.trainingData.length % 50 === 0) {
this.retrain();
}
}
async retrain() {
console.log('Retraining compression AI with', this.trainingData.length, 'samples');
// In production, implement actual ML training here
// For now, just cleanup old data
this.trainingData = this.trainingData.slice(-500); // Keep last 500 samples
}
}
Bu future trends ve emerging technologies, mobile networking'in geleceğini şekillendiriyor. 5G, edge computing ve AI/ML integration ile daha hızlı, daha akıllı ve daha efficient network solutions mümkün oluyor.