Network Monitoring & Analytics
Techniques for monitoring and analyzing network performance in mobile applications.
Real-Time Monitoring
Performance Metrics
- Response Time Tracking:
- Request/response latency measurement
- Percentile-based analysis (P50, P95, P99)
- Historical trend monitoring
- Bandwidth Usage:
- Data transfer volume tracking
- Upload/download speed monitoring
- Data usage optimization insights
- Error Rates:
- HTTP error code distribution
- Network failure categorization
- Error rate trending
Network Quality Assessment
- Connection Type Detection:
- WiFi vs cellular identification
- Connection speed classification
- Network quality scoring
- Signal Strength Monitoring:
- RSSI measurement
- Network carrier information
- Coverage area analysis
- Network Switching Events:
- Handover detection
- Connection stability tracking
- Performance impact assessment
Analytics Integration
User Behavior Analytics
- Network Usage Patterns:
- Peak usage times identification
- Feature usage correlation
- Geographic usage distribution
- Feature Adoption Tracking:
- Network-dependent feature usage
- Performance impact on adoption
- User retention correlation
- Error Impact Analysis:
- User drop-off after network errors
- Error recovery success rates
- Customer satisfaction correlation
Performance Analytics
- Load Time Tracking:
- Page/screen load performance
- Resource loading times
- User interaction delays
- Resource Utilization:
- Network stack efficiency
- Connection pool usage
- Cache hit rates
- Battery Impact Assessment:
- Network activity power consumption
- Radio usage optimization
- Background sync efficiency
Debugging Tools
Network Inspection
- Charles Proxy Integration:
- HTTP/HTTPS traffic analysis
- Request/response inspection
- SSL decryption for debugging
- Wireshark Analysis:
- Packet-level network analysis
- Protocol debugging
- Network troubleshooting
- Custom Logging:
- Application-level network logging
- Debug information collection
- Error context preservation
Performance Profiling
- CPU Usage Analysis:
- Network processing overhead
- Threading efficiency
- Background task impact
- Memory Consumption:
- Network buffer usage
- Cache memory allocation
- Memory leak detection
- Network Stack Analysis:
- Connection lifecycle tracking
- Protocol efficiency assessment
- Resource optimization opportunities
Monitoring Implementation
Platform-Specific Monitoring
Android Network Monitoring
kotlin
class NetworkMonitor {
private val connectivityManager = getSystemService(Context.CONNECTIVITY_SERVICE) as ConnectivityManager
fun startMonitoring() {
val request = NetworkRequest.Builder()
.addCapability(NetworkCapabilities.NET_CAPABILITY_INTERNET)
.build()
connectivityManager.registerNetworkCallback(request, networkCallback)
}
private val networkCallback = object : ConnectivityManager.NetworkCallback() {
override fun onAvailable(network: Network) {
// Network became available
trackNetworkEvent("network_available")
}
override fun onLost(network: Network) {
// Network lost
trackNetworkEvent("network_lost")
}
override fun onCapabilitiesChanged(network: Network, capabilities: NetworkCapabilities) {
val linkDownstream = capabilities.linkDownstreamBandwidthKbps
val linkUpstream = capabilities.linkUpstreamBandwidthKbps
trackBandwidth(linkDownstream, linkUpstream)
}
}
}
iOS Network Monitoring
swift
import Network
class NetworkMonitor: ObservableObject {
private let monitor = NWPathMonitor()
private let queue = DispatchQueue(label: "NetworkMonitor")
@Published var isConnected = false
@Published var connectionType: NWInterface.InterfaceType?
func startMonitoring() {
monitor.pathUpdateHandler = { [weak self] path in
DispatchQueue.main.async {
self?.isConnected = path.status == .satisfied
self?.connectionType = path.availableInterfaces.first?.type
self?.trackNetworkChange(path)
}
}
monitor.start(queue: queue)
}
private func trackNetworkChange(_ path: NWPath) {
let networkInfo = [
"status": path.status.rawValue,
"is_expensive": path.isExpensive,
"is_constrained": path.isConstrained
]
Analytics.track("network_change", properties: networkInfo)
}
}
Custom Analytics Implementation
dart
// Flutter Network Analytics
class NetworkAnalytics {
static final Map<String, List<int>> _responseTimes = {};
static final Map<String, int> _errorCounts = {};
static void trackRequest(String endpoint, int responseTime, bool success) {
// Track response time
_responseTimes.putIfAbsent(endpoint, () => []);
_responseTimes[endpoint]!.add(responseTime);
// Track errors
if (!success) {
_errorCounts[endpoint] = (_errorCounts[endpoint] ?? 0) + 1;
}
// Send to analytics service
_sendAnalytics(endpoint, responseTime, success);
}
static Map<String, dynamic> getPerformanceReport() {
final report = <String, dynamic>{};
_responseTimes.forEach((endpoint, times) {
if (times.isNotEmpty) {
times.sort();
report[endpoint] = {
'avg_response_time': times.reduce((a, b) => a + b) / times.length,
'p95_response_time': times[(times.length * 0.95).round()],
'error_rate': (_errorCounts[endpoint] ?? 0) / times.length,
'total_requests': times.length,
};
}
});
return report;
}
}
Advanced Monitoring Techniques
Real-Time Alerting
- Performance Threshold Monitoring:
- Response time alerts
- Error rate spikes
- Bandwidth usage limits
- Automated Incident Response:
- Alert escalation
- Performance degradation detection
- Recovery time tracking
A/B Testing for Network Performance
- Performance Experiment Design:
- Different retry strategies testing
- Compression algorithm comparison
- Caching strategy evaluation
- Statistical Analysis:
- Performance impact measurement
- User experience correlation
- Business metric correlation
Predictive Analytics
- Performance Forecasting:
- Traffic pattern prediction
- Resource usage forecasting
- Capacity planning insights
- Anomaly Detection:
- Unusual traffic patterns
- Performance regression detection
- Security threat identification