Skip to content

Network Monitoring & Analytics

Techniques for monitoring and analyzing network performance in mobile applications.

Real-Time Monitoring

Performance Metrics

  • Response Time Tracking:
    • Request/response latency measurement
    • Percentile-based analysis (P50, P95, P99)
    • Historical trend monitoring
  • Bandwidth Usage:
    • Data transfer volume tracking
    • Upload/download speed monitoring
    • Data usage optimization insights
  • Error Rates:
    • HTTP error code distribution
    • Network failure categorization
    • Error rate trending

Network Quality Assessment

  • Connection Type Detection:
    • WiFi vs cellular identification
    • Connection speed classification
    • Network quality scoring
  • Signal Strength Monitoring:
    • RSSI measurement
    • Network carrier information
    • Coverage area analysis
  • Network Switching Events:
    • Handover detection
    • Connection stability tracking
    • Performance impact assessment

Analytics Integration

User Behavior Analytics

  • Network Usage Patterns:
    • Peak usage times identification
    • Feature usage correlation
    • Geographic usage distribution
  • Feature Adoption Tracking:
    • Network-dependent feature usage
    • Performance impact on adoption
    • User retention correlation
  • Error Impact Analysis:
    • User drop-off after network errors
    • Error recovery success rates
    • Customer satisfaction correlation

Performance Analytics

  • Load Time Tracking:
    • Page/screen load performance
    • Resource loading times
    • User interaction delays
  • Resource Utilization:
    • Network stack efficiency
    • Connection pool usage
    • Cache hit rates
  • Battery Impact Assessment:
    • Network activity power consumption
    • Radio usage optimization
    • Background sync efficiency

Debugging Tools

Network Inspection

  • Charles Proxy Integration:
    • HTTP/HTTPS traffic analysis
    • Request/response inspection
    • SSL decryption for debugging
  • Wireshark Analysis:
    • Packet-level network analysis
    • Protocol debugging
    • Network troubleshooting
  • Custom Logging:
    • Application-level network logging
    • Debug information collection
    • Error context preservation

Performance Profiling

  • CPU Usage Analysis:
    • Network processing overhead
    • Threading efficiency
    • Background task impact
  • Memory Consumption:
    • Network buffer usage
    • Cache memory allocation
    • Memory leak detection
  • Network Stack Analysis:
    • Connection lifecycle tracking
    • Protocol efficiency assessment
    • Resource optimization opportunities

Monitoring Implementation

Platform-Specific Monitoring

Android Network Monitoring

kotlin
class NetworkMonitor {
    private val connectivityManager = getSystemService(Context.CONNECTIVITY_SERVICE) as ConnectivityManager
    
    fun startMonitoring() {
        val request = NetworkRequest.Builder()
            .addCapability(NetworkCapabilities.NET_CAPABILITY_INTERNET)
            .build()
            
        connectivityManager.registerNetworkCallback(request, networkCallback)
    }
    
    private val networkCallback = object : ConnectivityManager.NetworkCallback() {
        override fun onAvailable(network: Network) {
            // Network became available
            trackNetworkEvent("network_available")
        }
        
        override fun onLost(network: Network) {
            // Network lost
            trackNetworkEvent("network_lost")
        }
        
        override fun onCapabilitiesChanged(network: Network, capabilities: NetworkCapabilities) {
            val linkDownstream = capabilities.linkDownstreamBandwidthKbps
            val linkUpstream = capabilities.linkUpstreamBandwidthKbps
            
            trackBandwidth(linkDownstream, linkUpstream)
        }
    }
}

iOS Network Monitoring

swift
import Network

class NetworkMonitor: ObservableObject {
    private let monitor = NWPathMonitor()
    private let queue = DispatchQueue(label: "NetworkMonitor")
    
    @Published var isConnected = false
    @Published var connectionType: NWInterface.InterfaceType?
    
    func startMonitoring() {
        monitor.pathUpdateHandler = { [weak self] path in
            DispatchQueue.main.async {
                self?.isConnected = path.status == .satisfied
                self?.connectionType = path.availableInterfaces.first?.type
                
                self?.trackNetworkChange(path)
            }
        }
        
        monitor.start(queue: queue)
    }
    
    private func trackNetworkChange(_ path: NWPath) {
        let networkInfo = [
            "status": path.status.rawValue,
            "is_expensive": path.isExpensive,
            "is_constrained": path.isConstrained
        ]
        
        Analytics.track("network_change", properties: networkInfo)
    }
}

Custom Analytics Implementation

dart
// Flutter Network Analytics
class NetworkAnalytics {
  static final Map<String, List<int>> _responseTimes = {};
  static final Map<String, int> _errorCounts = {};
  
  static void trackRequest(String endpoint, int responseTime, bool success) {
    // Track response time
    _responseTimes.putIfAbsent(endpoint, () => []);
    _responseTimes[endpoint]!.add(responseTime);
    
    // Track errors
    if (!success) {
      _errorCounts[endpoint] = (_errorCounts[endpoint] ?? 0) + 1;
    }
    
    // Send to analytics service
    _sendAnalytics(endpoint, responseTime, success);
  }
  
  static Map<String, dynamic> getPerformanceReport() {
    final report = <String, dynamic>{};
    
    _responseTimes.forEach((endpoint, times) {
      if (times.isNotEmpty) {
        times.sort();
        report[endpoint] = {
          'avg_response_time': times.reduce((a, b) => a + b) / times.length,
          'p95_response_time': times[(times.length * 0.95).round()],
          'error_rate': (_errorCounts[endpoint] ?? 0) / times.length,
          'total_requests': times.length,
        };
      }
    });
    
    return report;
  }
}

Advanced Monitoring Techniques

Real-Time Alerting

  • Performance Threshold Monitoring:
    • Response time alerts
    • Error rate spikes
    • Bandwidth usage limits
  • Automated Incident Response:
    • Alert escalation
    • Performance degradation detection
    • Recovery time tracking

A/B Testing for Network Performance

  • Performance Experiment Design:
    • Different retry strategies testing
    • Compression algorithm comparison
    • Caching strategy evaluation
  • Statistical Analysis:
    • Performance impact measurement
    • User experience correlation
    • Business metric correlation

Predictive Analytics

  • Performance Forecasting:
    • Traffic pattern prediction
    • Resource usage forecasting
    • Capacity planning insights
  • Anomaly Detection:
    • Unusual traffic patterns
    • Performance regression detection
    • Security threat identification

Created by Eren Demir.