Skip to content

Hardware Acceleration

Hardware acceleration leverages specialized processors (GPU, NPU, DSP) to offload computationally intensive tasks from the CPU, resulting in better performance and energy efficiency for mobile applications.

GPU Acceleration Fundamentals

Graphics Processing Pipeline

swift
// iOS - Metal GPU acceleration
import Metal
import MetalKit

class GPUAcceleratedRenderer {
    private let device: MTLDevice
    private let commandQueue: MTLCommandQueue
    private let library: MTLLibrary
    
    init() throws {
        guard let device = MTLCreateSystemDefaultDevice() else {
            throw GPUError.deviceNotAvailable
        }
        
        self.device = device
        self.commandQueue = device.makeCommandQueue()!
        self.library = device.makeDefaultLibrary()!
    }
    
    func createComputePipeline(functionName: String) throws -> MTLComputePipelineState {
        guard let function = library.makeFunction(name: functionName) else {
            throw GPUError.functionNotFound
        }
        
        return try device.makeComputePipelineState(function: function)
    }
    
    func executeComputeShader<T>(
        pipeline: MTLComputePipelineState,
        inputData: [T],
        outputCount: Int
    ) throws -> [T] {
        let inputBuffer = device.makeBuffer(
            bytes: inputData,
            length: inputData.count * MemoryLayout<T>.stride,
            options: .storageModeShared
        )!
        
        let outputBuffer = device.makeBuffer(
            length: outputCount * MemoryLayout<T>.stride,
            options: .storageModeShared
        )!
        
        let commandBuffer = commandQueue.makeCommandBuffer()!
        let encoder = commandBuffer.makeComputeCommandEncoder()!
        
        encoder.setComputePipelineState(pipeline)
        encoder.setBuffer(inputBuffer, offset: 0, index: 0)
        encoder.setBuffer(outputBuffer, offset: 0, index: 1)
        
        let threadsPerThreadgroup = MTLSize(width: 32, height: 1, depth: 1)
        let threadgroupsPerGrid = MTLSize(
            width: (inputData.count + threadsPerThreadgroup.width - 1) / threadsPerThreadgroup.width,
            height: 1,
            depth: 1
        )
        
        encoder.dispatchThreadgroups(threadgroupsPerGrid, threadsPerThreadgroup: threadsPerThreadgroup)
        encoder.endEncoding()
        
        commandBuffer.commit()
        commandBuffer.waitUntilCompleted()
        
        let resultPointer = outputBuffer.contents().bindMemory(to: T.self, capacity: outputCount)
        return Array(UnsafeBufferPointer(start: resultPointer, count: outputCount))
    }
}

Android OpenGL ES/Vulkan

kotlin
// Android - OpenGL ES acceleration
class OpenGLAcceleratedProcessor {
    private var program: Int = 0
    private var vertexShader: Int = 0
    private var fragmentShader: Int = 0
    
    fun initializeShaders() {
        val vertexShaderCode = """
            attribute vec4 vPosition;
            attribute vec2 aTexCoord;
            varying vec2 vTexCoord;
            
            void main() {
                gl_Position = vPosition;
                vTexCoord = aTexCoord;
            }
        """.trimIndent()
        
        val fragmentShaderCode = """
            precision mediump float;
            uniform sampler2D uTexture;
            varying vec2 vTexCoord;
            
            void main() {
                vec4 color = texture2D(uTexture, vTexCoord);
                // Apply GPU-accelerated effects
                gl_FragColor = color;
            }
        """.trimIndent()
        
        vertexShader = loadShader(GLES20.GL_VERTEX_SHADER, vertexShaderCode)
        fragmentShader = loadShader(GLES20.GL_FRAGMENT_SHADER, fragmentShaderCode)
        
        program = GLES20.glCreateProgram().also {
            GLES20.glAttachShader(it, vertexShader)
            GLES20.glAttachShader(it, fragmentShader)
            GLES20.glLinkProgram(it)
        }
    }
    
    private fun loadShader(type: Int, shaderCode: String): Int {
        return GLES20.glCreateShader(type).also { shader ->
            GLES20.glShaderSource(shader, shaderCode)
            GLES20.glCompileShader(shader)
        }
    }
    
    fun processTexture(textureId: Int, width: Int, height: Int) {
        GLES20.glUseProgram(program)
        
        // Bind texture and execute GPU processing
        GLES20.glActiveTexture(GLES20.GL_TEXTURE0)
        GLES20.glBindTexture(GLES20.GL_TEXTURE_2D, textureId)
        
        // Set uniforms and draw
        val textureUniform = GLES20.glGetUniformLocation(program, "uTexture")
        GLES20.glUniform1i(textureUniform, 0)
        
        // Execute rendering
        GLES20.glDrawArrays(GLES20.GL_TRIANGLE_STRIP, 0, 4)
    }
}

Neural Processing Unit (NPU) Acceleration

Core ML (iOS)

swift
// iOS - Core ML for NPU acceleration
import CoreML
import Vision

class NPUAcceleratedProcessor {
    private var model: VNCoreMLModel?
    
    init(modelName: String) throws {
        guard let modelURL = Bundle.main.url(forResource: modelName, withExtension: "mlmodelc"),
              let coreMLModel = try? MLModel(contentsOf: modelURL) else {
            throw NPUError.modelLoadFailed
        }
        
        self.model = try VNCoreMLModel(for: coreMLModel)
    }
    
    func processImage(_ image: CVPixelBuffer) async throws -> [VNObservation] {
        guard let model = model else {
            throw NPUError.modelNotLoaded
        }
        
        let request = VNCoreMLRequest(model: model)
        request.imageCropAndScaleOption = .scaleFill
        
        // Configure for NPU usage
        if #available(iOS 13.0, *) {
            request.usesCPUOnly = false // Allow NPU usage
        }
        
        let handler = VNImageRequestHandler(cvPixelBuffer: image, options: [:])
        
        return try await withCheckedThrowingContinuation { continuation in
            do {
                try handler.perform([request])
                continuation.resume(returning: request.results ?? [])
            } catch {
                continuation.resume(throwing: error)
            }
        }
    }
    
    func benchmarkNPUPerformance() async {
        let startTime = CFAbsoluteTimeGetCurrent()
        
        // Create dummy input
        guard let pixelBuffer = createDummyPixelBuffer() else { return }
        
        do {
            _ = try await processImage(pixelBuffer)
            let endTime = CFAbsoluteTimeGetCurrent()
            let processingTime = (endTime - startTime) * 1000 // ms
            
            print("NPU processing time: \(processingTime)ms")
        } catch {
            print("NPU benchmark failed: \(error)")
        }
    }
}

Android Neural Networks API

kotlin
// Android - NNAPI acceleration
class NNAPIProcessor {
    private var compilation: NeuralNetworksCompilation? = null
    private var model: NeuralNetworksModel? = null
    
    fun initializeModel(modelBytes: ByteArray) {
        try {
            model = NeuralNetworksModel().apply {
                // Define model architecture
                addOperand(NeuralNetworksOperandType.TENSOR_FLOAT32, intArrayOf(1, 224, 224, 3))
                addOperand(NeuralNetworksOperandType.TENSOR_FLOAT32, intArrayOf(1, 1000))
                
                // Add operations
                addOperation(NeuralNetworksOperationType.CONV_2D, intArrayOf(0), intArrayOf(1))
                
                // Set model inputs and outputs
                identifyInputsAndOutputs(intArrayOf(0), intArrayOf(1))
                finish()
            }
            
            compilation = NeuralNetworksCompilation(model!!).apply {
                setPreference(NeuralNetworksCompilation.PREFER_FAST_SINGLE_ANSWER)
                finish()
            }
        } catch (e: Exception) {
            Log.e("NNAPI", "Model initialization failed", e)
        }
    }
    
    fun executeInference(inputData: FloatArray): FloatArray? {
        return try {
            val execution = NeuralNetworksExecution(compilation!!)
            
            // Set input
            execution.setInput(0, inputData)
            
            // Prepare output
            val outputData = FloatArray(1000)
            execution.setOutput(0, outputData)
            
            // Execute on NPU/DSP
            execution.compute()
            
            outputData
        } catch (e: Exception) {
            Log.e("NNAPI", "Inference failed", e)
            null
        }
    }
}

Image Processing Acceleration

Metal Performance Shaders

swift
// iOS - Metal Performance Shaders for image processing
import MetalPerformanceShaders

class MPSImageProcessor {
    private let device: MTLDevice
    private let commandQueue: MTLCommandQueue
    
    init() throws {
        guard let device = MTLCreateSystemDefaultDevice() else {
            throw GPUError.deviceNotAvailable
        }
        
        self.device = device
        self.commandQueue = device.makeCommandQueue()!
    }
    
    func applyGaussianBlur(to texture: MTLTexture, sigma: Float) -> MTLTexture? {
        let blur = MPSImageGaussianBlur(device: device, sigma: sigma)
        
        let descriptor = MTLTextureDescriptor.texture2DDescriptor(
            pixelFormat: texture.pixelFormat,
            width: texture.width,
            height: texture.height,
            mipmapped: false
        )
        descriptor.usage = [.shaderRead, .shaderWrite]
        
        guard let outputTexture = device.makeTexture(descriptor: descriptor) else {
            return nil
        }
        
        let commandBuffer = commandQueue.makeCommandBuffer()!
        blur.encode(commandBuffer: commandBuffer, sourceTexture: texture, destinationTexture: outputTexture)
        commandBuffer.commit()
        commandBuffer.waitUntilCompleted()
        
        return outputTexture
    }
    
    func performConvolution(input: MTLTexture, kernel: [Float], kernelSize: Int) -> MTLTexture? {
        let convolution = MPSImageConvolution(
            device: device,
            kernelWidth: kernelSize,
            kernelHeight: kernelSize,
            weights: kernel
        )
        
        let descriptor = MTLTextureDescriptor.texture2DDescriptor(
            pixelFormat: input.pixelFormat,
            width: input.width,
            height: input.height,
            mipmapped: false
        )
        descriptor.usage = [.shaderRead, .shaderWrite]
        
        guard let outputTexture = device.makeTexture(descriptor: descriptor) else {
            return nil
        }
        
        let commandBuffer = commandQueue.makeCommandBuffer()!
        convolution.encode(commandBuffer: commandBuffer, sourceTexture: input, destinationTexture: outputTexture)
        commandBuffer.commit()
        commandBuffer.waitUntilCompleted()
        
        return outputTexture
    }
}

RenderScript (Android)

kotlin
// Android - RenderScript for parallel processing
class RenderScriptProcessor(private val context: Context) {
    private val renderScript = RenderScript.create(context)
    
    fun blurImage(inputBitmap: Bitmap, radius: Float): Bitmap {
        val inputAllocation = Allocation.createFromBitmap(renderScript, inputBitmap)
        val outputBitmap = Bitmap.createBitmap(
            inputBitmap.width,
            inputBitmap.height,
            inputBitmap.config
        )
        val outputAllocation = Allocation.createFromBitmap(renderScript, outputBitmap)
        
        val blurScript = ScriptIntrinsicBlur.create(renderScript, Element.U8_4(renderScript))
        blurScript.setRadius(radius)
        blurScript.setInput(inputAllocation)
        blurScript.forEach(outputAllocation)
        
        outputAllocation.copyTo(outputBitmap)
        
        // Cleanup
        inputAllocation.destroy()
        outputAllocation.destroy()
        blurScript.destroy()
        
        return outputBitmap
    }
    
    fun customKernelProcessing(input: FloatArray, kernelSize: Int): FloatArray {
        val inputAllocation = Allocation.createSized(
            renderScript,
            Element.F32(renderScript),
            input.size
        )
        inputAllocation.copyFrom(input)
        
        val outputAllocation = Allocation.createSized(
            renderScript,
            Element.F32(renderScript),
            input.size
        )
        
        // Load and execute custom script
        val script = ScriptC_custom_kernel(renderScript)
        script._input = inputAllocation
        script.invoke_processData()
        script.forEach_process(inputAllocation, outputAllocation)
        
        val output = FloatArray(input.size)
        outputAllocation.copyTo(output)
        
        return output
    }
}

Cross-Platform Hardware Acceleration

React Native GPU Processing

typescript
// React Native - Native module for GPU acceleration
import { NativeModules } from 'react-native';

interface GPUProcessor {
  processImage(imageUri: string, filter: string): Promise<string>;
  computeParallel(data: number[], operation: string): Promise<number[]>;
  benchmarkGPU(): Promise<{ renderTime: number; computeTime: number }>;
}

const { GPUAccelerator } = NativeModules as { GPUAccelerator: GPUProcessor };

class HardwareAcceleratedProcessor {
  async applyImageFilter(imageUri: string, filterType: 'blur' | 'sharpen' | 'edge'): Promise<string> {
    try {
      const processedImageUri = await GPUAccelerator.processImage(imageUri, filterType);
      return processedImageUri;
    } catch (error) {
      console.error('GPU image processing failed:', error);
      throw error;
    }
  }
  
  async parallelComputation(data: number[], operation: 'sum' | 'multiply' | 'transform'): Promise<number[]> {
    const chunkSize = 1000; // Process in chunks for memory efficiency
    const results: number[] = [];
    
    for (let i = 0; i < data.length; i += chunkSize) {
      const chunk = data.slice(i, i + chunkSize);
      const chunkResult = await GPUAccelerator.computeParallel(chunk, operation);
      results.push(...chunkResult);
    }
    
    return results;
  }
  
  async measurePerformance(): Promise<{ cpu: number; gpu: number }> {
    const cpuStart = performance.now();
    
    // CPU-only computation
    const testData = new Array(10000).fill(0).map((_, i) => i);
    testData.reduce((acc, val) => acc + val * val, 0);
    
    const cpuTime = performance.now() - cpuStart;
    
    // GPU computation
    const gpuBenchmark = await GPUAccelerator.benchmarkGPU();
    
    return {
      cpu: cpuTime,
      gpu: gpuBenchmark.computeTime
    };
  }
}

Flutter GPU Acceleration

dart
// Flutter - Platform channel for hardware acceleration
class HardwareAcceleration {
  static const platform = MethodChannel('hardware_acceleration');
  
  static Future<Uint8List> processImageGPU(Uint8List imageData, String filter) async {
    try {
      final result = await platform.invokeMethod('processImage', {
        'imageData': imageData,
        'filter': filter,
      });
      return result as Uint8List;
    } on PlatformException catch (e) {
      throw Exception('GPU processing failed: ${e.message}');
    }
  }
  
  static Future<List<double>> computeParallel(List<double> data) async {
    try {
      final result = await platform.invokeMethod('computeParallel', {
        'data': data,
      });
      return List<double>.from(result);
    } on PlatformException catch (e) {
      throw Exception('Parallel computation failed: ${e.message}');
    }
  }
  
  static Future<Map<String, double>> benchmarkHardware() async {
    try {
      final result = await platform.invokeMethod('benchmark');
      return Map<String, double>.from(result);
    } on PlatformException catch (e) {
      throw Exception('Benchmark failed: ${e.message}');
    }
  }
}

// Usage in Flutter widget
class AcceleratedImageProcessor extends StatefulWidget {
  @override
  _AcceleratedImageProcessorState createState() => _AcceleratedImageProcessorState();
}

class _AcceleratedImageProcessorState extends State<AcceleratedImageProcessor> {
  bool _isProcessing = false;
  Uint8List? _processedImage;
  
  Future<void> _processImage(Uint8List originalImage) async {
    setState(() => _isProcessing = true);
    
    try {
      final processed = await HardwareAcceleration.processImageGPU(
        originalImage,
        'blur'
      );
      
      setState(() {
        _processedImage = processed;
        _isProcessing = false;
      });
    } catch (e) {
      print('Processing error: $e');
      setState(() => _isProcessing = false);
    }
  }
}

Performance Optimization Strategies

Memory Management for Hardware Acceleration

swift
// iOS - Efficient memory management for GPU operations
class GPUMemoryManager {
    private let device: MTLDevice
    private var bufferPool: [MTLBuffer] = []
    private let maxPoolSize = 10
    
    init(device: MTLDevice) {
        self.device = device
    }
    
    func getBuffer(size: Int) -> MTLBuffer? {
        // Try to reuse existing buffer
        if let index = bufferPool.firstIndex(where: { $0.length >= size }) {
            return bufferPool.remove(at: index)
        }
        
        // Create new buffer if pool is empty or no suitable buffer found
        return device.makeBuffer(length: size, options: .storageModeShared)
    }
    
    func returnBuffer(_ buffer: MTLBuffer) {
        if bufferPool.count < maxPoolSize {
            bufferPool.append(buffer)
        }
        // Buffer will be automatically deallocated if pool is full
    }
    
    func clearPool() {
        bufferPool.removeAll()
    }
}

Async GPU Operations

kotlin
// Android - Asynchronous GPU processing
class AsyncGPUProcessor {
    private val glExecutor = Executors.newSingleThreadExecutor()
    private val computeExecutor = Executors.newFixedThreadPool(2)
    
    fun processAsync(
        inputData: FloatArray,
        callback: (FloatArray) -> Unit
    ) {
        computeExecutor.submit {
            try {
                val result = processOnGPU(inputData)
                
                // Return result on main thread
                Handler(Looper.getMainLooper()).post {
                    callback(result)
                }
            } catch (e: Exception) {
                Log.e("AsyncGPU", "Processing failed", e)
            }
        }
    }
    
    private fun processOnGPU(data: FloatArray): FloatArray {
        // GPU processing implementation
        return data.map { it * 2.0f }.toFloatArray()
    }
    
    fun batchProcess(
        batches: List<FloatArray>,
        progressCallback: (Int, Int) -> Unit,
        completionCallback: (List<FloatArray>) -> Unit
    ) {
        val results = mutableListOf<FloatArray>()
        val totalBatches = batches.size
        
        batches.forEachIndexed { index, batch ->
            computeExecutor.submit {
                val result = processOnGPU(batch)
                
                synchronized(results) {
                    results.add(result)
                    
                    Handler(Looper.getMainLooper()).post {
                        progressCallback(index + 1, totalBatches)
                        
                        if (results.size == totalBatches) {
                            completionCallback(results.toList())
                        }
                    }
                }
            }
        }
    }
}

Hardware Detection and Fallbacks

Capability Detection

typescript
// Cross-platform hardware capability detection
interface HardwareCapabilities {
  hasGPU: boolean;
  hasNPU: boolean;
  hasDSP: boolean;
  gpuMemory: number;
  computeUnits: number;
  supportedFormats: string[];
}

class HardwareDetector {
  static async getCapabilities(): Promise<HardwareCapabilities> {
    if (Platform.OS === 'ios') {
      return await this.getIOSCapabilities();
    } else {
      return await this.getAndroidCapabilities();
    }
  }
  
  private static async getIOSCapabilities(): Promise<HardwareCapabilities> {
    const capabilities = await NativeModules.HardwareDetector.getIOSCapabilities();
    
    return {
      hasGPU: capabilities.hasGPU,
      hasNPU: capabilities.hasNeuralEngine,
      hasDSP: capabilities.hasImageSignalProcessor,
      gpuMemory: capabilities.gpuMemory,
      computeUnits: capabilities.gpuCores,
      supportedFormats: capabilities.supportedPixelFormats
    };
  }
  
  private static async getAndroidCapabilities(): Promise<HardwareCapabilities> {
    const capabilities = await NativeModules.HardwareDetector.getAndroidCapabilities();
    
    return {
      hasGPU: capabilities.hasGPU,
      hasNPU: capabilities.hasNNAPI,
      hasDSP: capabilities.hasHexagonDSP,
      gpuMemory: capabilities.gpuMemory,
      computeUnits: capabilities.gpuCores,
      supportedFormats: capabilities.supportedFormats
    };
  }
  
  static selectOptimalProcessor(
    capabilities: HardwareCapabilities,
    taskType: 'image' | 'ml' | 'compute'
  ): ProcessorType {
    switch (taskType) {
      case 'image':
        return capabilities.hasGPU ? 'gpu' : 'cpu';
      case 'ml':
        return capabilities.hasNPU ? 'npu' : 
               capabilities.hasGPU ? 'gpu' : 'cpu';
      case 'compute':
        return capabilities.hasDSP ? 'dsp' :
               capabilities.hasGPU ? 'gpu' : 'cpu';
      default:
        return 'cpu';
    }
  }
}

type ProcessorType = 'cpu' | 'gpu' | 'npu' | 'dsp';

Best Practices

Hardware Acceleration Guidelines

  1. Choose the right accelerator

    • GPU: Parallel graphics and compute operations
    • NPU: Machine learning inference
    • DSP: Signal processing and audio
  2. Memory optimization

    • Pool GPU buffers
    • Minimize CPU-GPU transfers
    • Use appropriate memory types
  3. Async processing

    • Don't block main thread
    • Implement proper error handling
    • Provide progress feedback
  4. Fallback strategies

    • Detect hardware capabilities
    • Implement CPU fallbacks
    • Graceful degradation
  5. Power efficiency

    • Monitor thermal state
    • Balance performance vs battery
    • Use adaptive quality settings

Hardware acceleration is essential for performance-critical mobile applications. Proper implementation can provide significant performance improvements while maintaining energy efficiency across different device capabilities.

Advanced GPU Features

Compute Shaders and Parallel Processing

swift
// iOS - Advanced Metal Compute Shaders
class AdvancedMetalCompute {
    private let device: MTLDevice
    private let commandQueue: MTLCommandQueue
    private let library: MTLLibrary
    
    init() throws {
        guard let device = MTLCreateSystemDefaultDevice(),
              let commandQueue = device.makeCommandQueue(),
              let library = device.makeDefaultLibrary() else {
            throw GPUError.deviceNotAvailable
        }
        
        self.device = device
        self.commandQueue = commandQueue
        self.library = library
    }
    
    func performParallelReduction(data: [Float]) -> Float {
        guard let function = library.makeFunction(name: "parallel_reduction"),
              let pipeline = try? device.makeComputePipelineState(function: function) else {
            return 0.0
        }
        
        let inputBuffer = device.makeBuffer(bytes: data,
                                          length: data.count * MemoryLayout<Float>.size,
                                          options: [])!
        
        let outputBuffer = device.makeBuffer(length: MemoryLayout<Float>.size,
                                           options: [])!
        
        let commandBuffer = commandQueue.makeCommandBuffer()!
        let encoder = commandBuffer.makeComputeCommandEncoder()!
        
        encoder.setComputePipelineState(pipeline)
        encoder.setBuffer(inputBuffer, offset: 0, index: 0)
        encoder.setBuffer(outputBuffer, offset: 0, index: 1)
        
        let threadsPerGroup = MTLSize(width: 256, height: 1, depth: 1)
        let numGroups = MTLSize(width: (data.count + 255) / 256, height: 1, depth: 1)
        
        encoder.dispatchThreadgroups(numGroups, threadsPerThreadgroup: threadsPerGroup)
        encoder.endEncoding()
        
        commandBuffer.commit()
        commandBuffer.waitUntilCompleted()
        
        let result = outputBuffer.contents().load(as: Float.self)
        return result
    }
}

Performance Monitoring and Profiling

kotlin
// Android - GPU Performance Monitoring
class GPUPerformanceMonitor {
    private val metrics = mutableMapOf<String, PerformanceMetric>()
    private val frameTimeHistory = CircularBuffer<Long>(60) // Store last 60 frames
    
    data class PerformanceMetric(
        val name: String,
        var totalTime: Long = 0,
        var callCount: Int = 0,
        var peakTime: Long = 0
    )
    
    fun beginOperation(name: String) {
        val startTime = System.nanoTime()
        metrics.getOrPut(name) { PerformanceMetric(name) }.apply {
            callCount++
            val duration = System.nanoTime() - startTime
            totalTime += duration
            peakTime = maxOf(peakTime, duration)
        }
    }
    
    fun recordFrameTime(frameTime: Long) {
        frameTimeHistory.add(frameTime)
        updatePerformanceMetrics()
    }
    
    private fun updatePerformanceMetrics() {
        val averageFrameTime = frameTimeHistory.average()
        val fps = 1_000_000_000.0 / averageFrameTime
        
        Log.d("GPU Performance", "Average FPS: $fps")
        Log.d("GPU Performance", "Frame Time: ${averageFrameTime / 1_000_000}ms")
        
        metrics.forEach { (name, metric) ->
            Log.d("GPU Performance", """
                Operation: $name
                Average Time: ${metric.totalTime / metric.callCount / 1_000_000}ms
                Peak Time: ${metric.peakTime / 1_000_000}ms
                Call Count: ${metric.callCount}
            """.trimIndent())
        }
    }
    
    fun generatePerformanceReport(): String {
        return buildString {
            appendLine("GPU Performance Report")
            appendLine("====================")
            appendLine("Frame Statistics:")
            appendLine("Average FPS: ${1_000_000_000.0 / frameTimeHistory.average()}")
            appendLine("Frame Time: ${frameTimeHistory.average() / 1_000_000}ms")
            appendLine("\nOperation Statistics:")
            metrics.forEach { (name, metric) ->
                appendLine("$name:")
                appendLine("  Average Time: ${metric.totalTime / metric.callCount / 1_000_000}ms")
                appendLine("  Peak Time: ${metric.peakTime / 1_000_000}ms")
                appendLine("  Call Count: ${metric.callCount}")
            }
        }
    }
}

Thermal Management

swift
// iOS - GPU Thermal Management
class GPUThermalManager {
    private let device: MTLDevice
    private var thermalState: MTLDeviceThermalState = .nominal
    private var thermalStateCallback: ((MTLDeviceThermalState) -> Void)?
    
    init(device: MTLDevice) {
        self.device = device
        setupThermalMonitoring()
    }
    
    private func setupThermalMonitoring() {
        NotificationCenter.default.addObserver(
            self,
            selector: #selector(thermalStateChanged),
            name: .MTLDeviceThermalStateDidChange,
            object: device
        )
    }
    
    @objc private func thermalStateChanged(_ notification: Notification) {
        thermalState = device.thermalState
        thermalStateCallback?(thermalState)
        
        switch thermalState {
        case .nominal:
            Log.info("GPU thermal state: Nominal")
        case .fair:
            Log.warning("GPU thermal state: Fair - Consider reducing workload")
        case .serious:
            Log.error("GPU thermal state: Serious - Reduce workload immediately")
        case .critical:
            Log.error("GPU thermal state: Critical - Stop GPU operations")
        @unknown default:
            Log.error("Unknown GPU thermal state")
        }
    }
    
    func setThermalStateCallback(_ callback: @escaping (MTLDeviceThermalState) -> Void) {
        thermalStateCallback = callback
    }
    
    func adjustWorkloadForThermalState() -> WorkloadAdjustment {
        switch thermalState {
        case .nominal:
            return .full
        case .fair:
            return .reduced
        case .serious:
            return .minimal
        case .critical:
            return .none
        @unknown default:
            return .reduced
        }
    }
}

enum WorkloadAdjustment {
    case full
    case reduced
    case minimal
    case none
}

Advanced Optimization Techniques

Pipeline State Caching

kotlin
// Android - Pipeline State Caching
class PipelineStateCache {
    private val cache = LruCache<String, PipelineState>(10)
    private val pipelineStates = mutableMapOf<String, PipelineState>()
    
    data class PipelineState(
        val vertexShader: String,
        val fragmentShader: String,
        val blendState: BlendState,
        val depthState: DepthState
    )
    
    fun getOrCreatePipelineState(
        vertexShader: String,
        fragmentShader: String,
        blendState: BlendState,
        depthState: DepthState
    ): PipelineState {
        val key = generatePipelineKey(vertexShader, fragmentShader, blendState, depthState)
        
        return pipelineStates.getOrPut(key) {
            createPipelineState(vertexShader, fragmentShader, blendState, depthState)
        }
    }
    
    private fun generatePipelineKey(
        vertexShader: String,
        fragmentShader: String,
        blendState: BlendState,
        depthState: DepthState
    ): String {
        return "$vertexShader|$fragmentShader|$blendState|$depthState"
    }
    
    private fun createPipelineState(
        vertexShader: String,
        fragmentShader: String,
        blendState: BlendState,
        depthState: DepthState
    ): PipelineState {
        // Create and compile pipeline state
        return PipelineState(vertexShader, fragmentShader, blendState, depthState)
    }
}

Memory Pool Management

swift
// iOS - Advanced Memory Pool Management
class AdvancedMemoryPool {
    private let device: MTLDevice
    private var bufferPools: [Int: [MTLBuffer]] = [:]
    private let maxPoolSize = 10
    
    init(device: MTLDevice) {
        self.device = device
    }
    
    func getBuffer(size: Int, options: MTLResourceOptions = []) -> MTLBuffer? {
        let pool = bufferPools[size] ?? []
        
        if let buffer = pool.first {
            bufferPools[size] = Array(pool.dropFirst())
            return buffer
        }
        
        return device.makeBuffer(length: size, options: options)
    }
    
    func returnBuffer(_ buffer: MTLBuffer) {
        let size = buffer.length
        var pool = bufferPools[size] ?? []
        
        if pool.count < maxPoolSize {
            pool.append(buffer)
            bufferPools[size] = pool
        }
    }
    
    func clearPools() {
        bufferPools.removeAll()
    }
    
    func getPoolStats() -> [String: Int] {
        return bufferPools.mapValues { $0.count }
    }
}

Best Practices for Advanced GPU Programming

  1. Pipeline State Management

    • Cache pipeline states
    • Minimize state changes
    • Use state objects efficiently
  2. Memory Optimization

    • Implement buffer pools
    • Use appropriate memory types
    • Monitor memory usage
  3. Performance Monitoring

    • Track frame times
    • Monitor thermal state
    • Profile GPU operations
  4. Advanced Features

    • Use compute shaders
    • Implement parallel processing
    • Optimize for specific hardware
  5. Error Handling

    • Implement proper fallbacks
    • Handle thermal throttling
    • Monitor GPU errors

Advanced GPU programming requires careful consideration of performance, memory management, and hardware capabilities. By following these best practices and implementing advanced features appropriately, developers can create high-performance mobile applications that make efficient use of GPU resources.

Created by Eren Demir.