Hardware Acceleration
Hardware acceleration leverages specialized processors (GPU, NPU, DSP) to offload computationally intensive tasks from the CPU, resulting in better performance and energy efficiency for mobile applications.
GPU Acceleration Fundamentals
Graphics Processing Pipeline
// iOS - Metal GPU acceleration
import Metal
import MetalKit
class GPUAcceleratedRenderer {
private let device: MTLDevice
private let commandQueue: MTLCommandQueue
private let library: MTLLibrary
init() throws {
guard let device = MTLCreateSystemDefaultDevice() else {
throw GPUError.deviceNotAvailable
}
self.device = device
self.commandQueue = device.makeCommandQueue()!
self.library = device.makeDefaultLibrary()!
}
func createComputePipeline(functionName: String) throws -> MTLComputePipelineState {
guard let function = library.makeFunction(name: functionName) else {
throw GPUError.functionNotFound
}
return try device.makeComputePipelineState(function: function)
}
func executeComputeShader<T>(
pipeline: MTLComputePipelineState,
inputData: [T],
outputCount: Int
) throws -> [T] {
let inputBuffer = device.makeBuffer(
bytes: inputData,
length: inputData.count * MemoryLayout<T>.stride,
options: .storageModeShared
)!
let outputBuffer = device.makeBuffer(
length: outputCount * MemoryLayout<T>.stride,
options: .storageModeShared
)!
let commandBuffer = commandQueue.makeCommandBuffer()!
let encoder = commandBuffer.makeComputeCommandEncoder()!
encoder.setComputePipelineState(pipeline)
encoder.setBuffer(inputBuffer, offset: 0, index: 0)
encoder.setBuffer(outputBuffer, offset: 0, index: 1)
let threadsPerThreadgroup = MTLSize(width: 32, height: 1, depth: 1)
let threadgroupsPerGrid = MTLSize(
width: (inputData.count + threadsPerThreadgroup.width - 1) / threadsPerThreadgroup.width,
height: 1,
depth: 1
)
encoder.dispatchThreadgroups(threadgroupsPerGrid, threadsPerThreadgroup: threadsPerThreadgroup)
encoder.endEncoding()
commandBuffer.commit()
commandBuffer.waitUntilCompleted()
let resultPointer = outputBuffer.contents().bindMemory(to: T.self, capacity: outputCount)
return Array(UnsafeBufferPointer(start: resultPointer, count: outputCount))
}
}
Android OpenGL ES/Vulkan
// Android - OpenGL ES acceleration
class OpenGLAcceleratedProcessor {
private var program: Int = 0
private var vertexShader: Int = 0
private var fragmentShader: Int = 0
fun initializeShaders() {
val vertexShaderCode = """
attribute vec4 vPosition;
attribute vec2 aTexCoord;
varying vec2 vTexCoord;
void main() {
gl_Position = vPosition;
vTexCoord = aTexCoord;
}
""".trimIndent()
val fragmentShaderCode = """
precision mediump float;
uniform sampler2D uTexture;
varying vec2 vTexCoord;
void main() {
vec4 color = texture2D(uTexture, vTexCoord);
// Apply GPU-accelerated effects
gl_FragColor = color;
}
""".trimIndent()
vertexShader = loadShader(GLES20.GL_VERTEX_SHADER, vertexShaderCode)
fragmentShader = loadShader(GLES20.GL_FRAGMENT_SHADER, fragmentShaderCode)
program = GLES20.glCreateProgram().also {
GLES20.glAttachShader(it, vertexShader)
GLES20.glAttachShader(it, fragmentShader)
GLES20.glLinkProgram(it)
}
}
private fun loadShader(type: Int, shaderCode: String): Int {
return GLES20.glCreateShader(type).also { shader ->
GLES20.glShaderSource(shader, shaderCode)
GLES20.glCompileShader(shader)
}
}
fun processTexture(textureId: Int, width: Int, height: Int) {
GLES20.glUseProgram(program)
// Bind texture and execute GPU processing
GLES20.glActiveTexture(GLES20.GL_TEXTURE0)
GLES20.glBindTexture(GLES20.GL_TEXTURE_2D, textureId)
// Set uniforms and draw
val textureUniform = GLES20.glGetUniformLocation(program, "uTexture")
GLES20.glUniform1i(textureUniform, 0)
// Execute rendering
GLES20.glDrawArrays(GLES20.GL_TRIANGLE_STRIP, 0, 4)
}
}
Neural Processing Unit (NPU) Acceleration
Core ML (iOS)
// iOS - Core ML for NPU acceleration
import CoreML
import Vision
class NPUAcceleratedProcessor {
private var model: VNCoreMLModel?
init(modelName: String) throws {
guard let modelURL = Bundle.main.url(forResource: modelName, withExtension: "mlmodelc"),
let coreMLModel = try? MLModel(contentsOf: modelURL) else {
throw NPUError.modelLoadFailed
}
self.model = try VNCoreMLModel(for: coreMLModel)
}
func processImage(_ image: CVPixelBuffer) async throws -> [VNObservation] {
guard let model = model else {
throw NPUError.modelNotLoaded
}
let request = VNCoreMLRequest(model: model)
request.imageCropAndScaleOption = .scaleFill
// Configure for NPU usage
if #available(iOS 13.0, *) {
request.usesCPUOnly = false // Allow NPU usage
}
let handler = VNImageRequestHandler(cvPixelBuffer: image, options: [:])
return try await withCheckedThrowingContinuation { continuation in
do {
try handler.perform([request])
continuation.resume(returning: request.results ?? [])
} catch {
continuation.resume(throwing: error)
}
}
}
func benchmarkNPUPerformance() async {
let startTime = CFAbsoluteTimeGetCurrent()
// Create dummy input
guard let pixelBuffer = createDummyPixelBuffer() else { return }
do {
_ = try await processImage(pixelBuffer)
let endTime = CFAbsoluteTimeGetCurrent()
let processingTime = (endTime - startTime) * 1000 // ms
print("NPU processing time: \(processingTime)ms")
} catch {
print("NPU benchmark failed: \(error)")
}
}
}
Android Neural Networks API
// Android - NNAPI acceleration
class NNAPIProcessor {
private var compilation: NeuralNetworksCompilation? = null
private var model: NeuralNetworksModel? = null
fun initializeModel(modelBytes: ByteArray) {
try {
model = NeuralNetworksModel().apply {
// Define model architecture
addOperand(NeuralNetworksOperandType.TENSOR_FLOAT32, intArrayOf(1, 224, 224, 3))
addOperand(NeuralNetworksOperandType.TENSOR_FLOAT32, intArrayOf(1, 1000))
// Add operations
addOperation(NeuralNetworksOperationType.CONV_2D, intArrayOf(0), intArrayOf(1))
// Set model inputs and outputs
identifyInputsAndOutputs(intArrayOf(0), intArrayOf(1))
finish()
}
compilation = NeuralNetworksCompilation(model!!).apply {
setPreference(NeuralNetworksCompilation.PREFER_FAST_SINGLE_ANSWER)
finish()
}
} catch (e: Exception) {
Log.e("NNAPI", "Model initialization failed", e)
}
}
fun executeInference(inputData: FloatArray): FloatArray? {
return try {
val execution = NeuralNetworksExecution(compilation!!)
// Set input
execution.setInput(0, inputData)
// Prepare output
val outputData = FloatArray(1000)
execution.setOutput(0, outputData)
// Execute on NPU/DSP
execution.compute()
outputData
} catch (e: Exception) {
Log.e("NNAPI", "Inference failed", e)
null
}
}
}
Image Processing Acceleration
Metal Performance Shaders
// iOS - Metal Performance Shaders for image processing
import MetalPerformanceShaders
class MPSImageProcessor {
private let device: MTLDevice
private let commandQueue: MTLCommandQueue
init() throws {
guard let device = MTLCreateSystemDefaultDevice() else {
throw GPUError.deviceNotAvailable
}
self.device = device
self.commandQueue = device.makeCommandQueue()!
}
func applyGaussianBlur(to texture: MTLTexture, sigma: Float) -> MTLTexture? {
let blur = MPSImageGaussianBlur(device: device, sigma: sigma)
let descriptor = MTLTextureDescriptor.texture2DDescriptor(
pixelFormat: texture.pixelFormat,
width: texture.width,
height: texture.height,
mipmapped: false
)
descriptor.usage = [.shaderRead, .shaderWrite]
guard let outputTexture = device.makeTexture(descriptor: descriptor) else {
return nil
}
let commandBuffer = commandQueue.makeCommandBuffer()!
blur.encode(commandBuffer: commandBuffer, sourceTexture: texture, destinationTexture: outputTexture)
commandBuffer.commit()
commandBuffer.waitUntilCompleted()
return outputTexture
}
func performConvolution(input: MTLTexture, kernel: [Float], kernelSize: Int) -> MTLTexture? {
let convolution = MPSImageConvolution(
device: device,
kernelWidth: kernelSize,
kernelHeight: kernelSize,
weights: kernel
)
let descriptor = MTLTextureDescriptor.texture2DDescriptor(
pixelFormat: input.pixelFormat,
width: input.width,
height: input.height,
mipmapped: false
)
descriptor.usage = [.shaderRead, .shaderWrite]
guard let outputTexture = device.makeTexture(descriptor: descriptor) else {
return nil
}
let commandBuffer = commandQueue.makeCommandBuffer()!
convolution.encode(commandBuffer: commandBuffer, sourceTexture: input, destinationTexture: outputTexture)
commandBuffer.commit()
commandBuffer.waitUntilCompleted()
return outputTexture
}
}
RenderScript (Android)
// Android - RenderScript for parallel processing
class RenderScriptProcessor(private val context: Context) {
private val renderScript = RenderScript.create(context)
fun blurImage(inputBitmap: Bitmap, radius: Float): Bitmap {
val inputAllocation = Allocation.createFromBitmap(renderScript, inputBitmap)
val outputBitmap = Bitmap.createBitmap(
inputBitmap.width,
inputBitmap.height,
inputBitmap.config
)
val outputAllocation = Allocation.createFromBitmap(renderScript, outputBitmap)
val blurScript = ScriptIntrinsicBlur.create(renderScript, Element.U8_4(renderScript))
blurScript.setRadius(radius)
blurScript.setInput(inputAllocation)
blurScript.forEach(outputAllocation)
outputAllocation.copyTo(outputBitmap)
// Cleanup
inputAllocation.destroy()
outputAllocation.destroy()
blurScript.destroy()
return outputBitmap
}
fun customKernelProcessing(input: FloatArray, kernelSize: Int): FloatArray {
val inputAllocation = Allocation.createSized(
renderScript,
Element.F32(renderScript),
input.size
)
inputAllocation.copyFrom(input)
val outputAllocation = Allocation.createSized(
renderScript,
Element.F32(renderScript),
input.size
)
// Load and execute custom script
val script = ScriptC_custom_kernel(renderScript)
script._input = inputAllocation
script.invoke_processData()
script.forEach_process(inputAllocation, outputAllocation)
val output = FloatArray(input.size)
outputAllocation.copyTo(output)
return output
}
}
Cross-Platform Hardware Acceleration
React Native GPU Processing
// React Native - Native module for GPU acceleration
import { NativeModules } from 'react-native';
interface GPUProcessor {
processImage(imageUri: string, filter: string): Promise<string>;
computeParallel(data: number[], operation: string): Promise<number[]>;
benchmarkGPU(): Promise<{ renderTime: number; computeTime: number }>;
}
const { GPUAccelerator } = NativeModules as { GPUAccelerator: GPUProcessor };
class HardwareAcceleratedProcessor {
async applyImageFilter(imageUri: string, filterType: 'blur' | 'sharpen' | 'edge'): Promise<string> {
try {
const processedImageUri = await GPUAccelerator.processImage(imageUri, filterType);
return processedImageUri;
} catch (error) {
console.error('GPU image processing failed:', error);
throw error;
}
}
async parallelComputation(data: number[], operation: 'sum' | 'multiply' | 'transform'): Promise<number[]> {
const chunkSize = 1000; // Process in chunks for memory efficiency
const results: number[] = [];
for (let i = 0; i < data.length; i += chunkSize) {
const chunk = data.slice(i, i + chunkSize);
const chunkResult = await GPUAccelerator.computeParallel(chunk, operation);
results.push(...chunkResult);
}
return results;
}
async measurePerformance(): Promise<{ cpu: number; gpu: number }> {
const cpuStart = performance.now();
// CPU-only computation
const testData = new Array(10000).fill(0).map((_, i) => i);
testData.reduce((acc, val) => acc + val * val, 0);
const cpuTime = performance.now() - cpuStart;
// GPU computation
const gpuBenchmark = await GPUAccelerator.benchmarkGPU();
return {
cpu: cpuTime,
gpu: gpuBenchmark.computeTime
};
}
}
Flutter GPU Acceleration
// Flutter - Platform channel for hardware acceleration
class HardwareAcceleration {
static const platform = MethodChannel('hardware_acceleration');
static Future<Uint8List> processImageGPU(Uint8List imageData, String filter) async {
try {
final result = await platform.invokeMethod('processImage', {
'imageData': imageData,
'filter': filter,
});
return result as Uint8List;
} on PlatformException catch (e) {
throw Exception('GPU processing failed: ${e.message}');
}
}
static Future<List<double>> computeParallel(List<double> data) async {
try {
final result = await platform.invokeMethod('computeParallel', {
'data': data,
});
return List<double>.from(result);
} on PlatformException catch (e) {
throw Exception('Parallel computation failed: ${e.message}');
}
}
static Future<Map<String, double>> benchmarkHardware() async {
try {
final result = await platform.invokeMethod('benchmark');
return Map<String, double>.from(result);
} on PlatformException catch (e) {
throw Exception('Benchmark failed: ${e.message}');
}
}
}
// Usage in Flutter widget
class AcceleratedImageProcessor extends StatefulWidget {
@override
_AcceleratedImageProcessorState createState() => _AcceleratedImageProcessorState();
}
class _AcceleratedImageProcessorState extends State<AcceleratedImageProcessor> {
bool _isProcessing = false;
Uint8List? _processedImage;
Future<void> _processImage(Uint8List originalImage) async {
setState(() => _isProcessing = true);
try {
final processed = await HardwareAcceleration.processImageGPU(
originalImage,
'blur'
);
setState(() {
_processedImage = processed;
_isProcessing = false;
});
} catch (e) {
print('Processing error: $e');
setState(() => _isProcessing = false);
}
}
}
Performance Optimization Strategies
Memory Management for Hardware Acceleration
// iOS - Efficient memory management for GPU operations
class GPUMemoryManager {
private let device: MTLDevice
private var bufferPool: [MTLBuffer] = []
private let maxPoolSize = 10
init(device: MTLDevice) {
self.device = device
}
func getBuffer(size: Int) -> MTLBuffer? {
// Try to reuse existing buffer
if let index = bufferPool.firstIndex(where: { $0.length >= size }) {
return bufferPool.remove(at: index)
}
// Create new buffer if pool is empty or no suitable buffer found
return device.makeBuffer(length: size, options: .storageModeShared)
}
func returnBuffer(_ buffer: MTLBuffer) {
if bufferPool.count < maxPoolSize {
bufferPool.append(buffer)
}
// Buffer will be automatically deallocated if pool is full
}
func clearPool() {
bufferPool.removeAll()
}
}
Async GPU Operations
// Android - Asynchronous GPU processing
class AsyncGPUProcessor {
private val glExecutor = Executors.newSingleThreadExecutor()
private val computeExecutor = Executors.newFixedThreadPool(2)
fun processAsync(
inputData: FloatArray,
callback: (FloatArray) -> Unit
) {
computeExecutor.submit {
try {
val result = processOnGPU(inputData)
// Return result on main thread
Handler(Looper.getMainLooper()).post {
callback(result)
}
} catch (e: Exception) {
Log.e("AsyncGPU", "Processing failed", e)
}
}
}
private fun processOnGPU(data: FloatArray): FloatArray {
// GPU processing implementation
return data.map { it * 2.0f }.toFloatArray()
}
fun batchProcess(
batches: List<FloatArray>,
progressCallback: (Int, Int) -> Unit,
completionCallback: (List<FloatArray>) -> Unit
) {
val results = mutableListOf<FloatArray>()
val totalBatches = batches.size
batches.forEachIndexed { index, batch ->
computeExecutor.submit {
val result = processOnGPU(batch)
synchronized(results) {
results.add(result)
Handler(Looper.getMainLooper()).post {
progressCallback(index + 1, totalBatches)
if (results.size == totalBatches) {
completionCallback(results.toList())
}
}
}
}
}
}
}
Hardware Detection and Fallbacks
Capability Detection
// Cross-platform hardware capability detection
interface HardwareCapabilities {
hasGPU: boolean;
hasNPU: boolean;
hasDSP: boolean;
gpuMemory: number;
computeUnits: number;
supportedFormats: string[];
}
class HardwareDetector {
static async getCapabilities(): Promise<HardwareCapabilities> {
if (Platform.OS === 'ios') {
return await this.getIOSCapabilities();
} else {
return await this.getAndroidCapabilities();
}
}
private static async getIOSCapabilities(): Promise<HardwareCapabilities> {
const capabilities = await NativeModules.HardwareDetector.getIOSCapabilities();
return {
hasGPU: capabilities.hasGPU,
hasNPU: capabilities.hasNeuralEngine,
hasDSP: capabilities.hasImageSignalProcessor,
gpuMemory: capabilities.gpuMemory,
computeUnits: capabilities.gpuCores,
supportedFormats: capabilities.supportedPixelFormats
};
}
private static async getAndroidCapabilities(): Promise<HardwareCapabilities> {
const capabilities = await NativeModules.HardwareDetector.getAndroidCapabilities();
return {
hasGPU: capabilities.hasGPU,
hasNPU: capabilities.hasNNAPI,
hasDSP: capabilities.hasHexagonDSP,
gpuMemory: capabilities.gpuMemory,
computeUnits: capabilities.gpuCores,
supportedFormats: capabilities.supportedFormats
};
}
static selectOptimalProcessor(
capabilities: HardwareCapabilities,
taskType: 'image' | 'ml' | 'compute'
): ProcessorType {
switch (taskType) {
case 'image':
return capabilities.hasGPU ? 'gpu' : 'cpu';
case 'ml':
return capabilities.hasNPU ? 'npu' :
capabilities.hasGPU ? 'gpu' : 'cpu';
case 'compute':
return capabilities.hasDSP ? 'dsp' :
capabilities.hasGPU ? 'gpu' : 'cpu';
default:
return 'cpu';
}
}
}
type ProcessorType = 'cpu' | 'gpu' | 'npu' | 'dsp';
Best Practices
Hardware Acceleration Guidelines
Choose the right accelerator
- GPU: Parallel graphics and compute operations
- NPU: Machine learning inference
- DSP: Signal processing and audio
Memory optimization
- Pool GPU buffers
- Minimize CPU-GPU transfers
- Use appropriate memory types
Async processing
- Don't block main thread
- Implement proper error handling
- Provide progress feedback
Fallback strategies
- Detect hardware capabilities
- Implement CPU fallbacks
- Graceful degradation
Power efficiency
- Monitor thermal state
- Balance performance vs battery
- Use adaptive quality settings
Hardware acceleration is essential for performance-critical mobile applications. Proper implementation can provide significant performance improvements while maintaining energy efficiency across different device capabilities.
Advanced GPU Features
Compute Shaders and Parallel Processing
// iOS - Advanced Metal Compute Shaders
class AdvancedMetalCompute {
private let device: MTLDevice
private let commandQueue: MTLCommandQueue
private let library: MTLLibrary
init() throws {
guard let device = MTLCreateSystemDefaultDevice(),
let commandQueue = device.makeCommandQueue(),
let library = device.makeDefaultLibrary() else {
throw GPUError.deviceNotAvailable
}
self.device = device
self.commandQueue = commandQueue
self.library = library
}
func performParallelReduction(data: [Float]) -> Float {
guard let function = library.makeFunction(name: "parallel_reduction"),
let pipeline = try? device.makeComputePipelineState(function: function) else {
return 0.0
}
let inputBuffer = device.makeBuffer(bytes: data,
length: data.count * MemoryLayout<Float>.size,
options: [])!
let outputBuffer = device.makeBuffer(length: MemoryLayout<Float>.size,
options: [])!
let commandBuffer = commandQueue.makeCommandBuffer()!
let encoder = commandBuffer.makeComputeCommandEncoder()!
encoder.setComputePipelineState(pipeline)
encoder.setBuffer(inputBuffer, offset: 0, index: 0)
encoder.setBuffer(outputBuffer, offset: 0, index: 1)
let threadsPerGroup = MTLSize(width: 256, height: 1, depth: 1)
let numGroups = MTLSize(width: (data.count + 255) / 256, height: 1, depth: 1)
encoder.dispatchThreadgroups(numGroups, threadsPerThreadgroup: threadsPerGroup)
encoder.endEncoding()
commandBuffer.commit()
commandBuffer.waitUntilCompleted()
let result = outputBuffer.contents().load(as: Float.self)
return result
}
}
Performance Monitoring and Profiling
// Android - GPU Performance Monitoring
class GPUPerformanceMonitor {
private val metrics = mutableMapOf<String, PerformanceMetric>()
private val frameTimeHistory = CircularBuffer<Long>(60) // Store last 60 frames
data class PerformanceMetric(
val name: String,
var totalTime: Long = 0,
var callCount: Int = 0,
var peakTime: Long = 0
)
fun beginOperation(name: String) {
val startTime = System.nanoTime()
metrics.getOrPut(name) { PerformanceMetric(name) }.apply {
callCount++
val duration = System.nanoTime() - startTime
totalTime += duration
peakTime = maxOf(peakTime, duration)
}
}
fun recordFrameTime(frameTime: Long) {
frameTimeHistory.add(frameTime)
updatePerformanceMetrics()
}
private fun updatePerformanceMetrics() {
val averageFrameTime = frameTimeHistory.average()
val fps = 1_000_000_000.0 / averageFrameTime
Log.d("GPU Performance", "Average FPS: $fps")
Log.d("GPU Performance", "Frame Time: ${averageFrameTime / 1_000_000}ms")
metrics.forEach { (name, metric) ->
Log.d("GPU Performance", """
Operation: $name
Average Time: ${metric.totalTime / metric.callCount / 1_000_000}ms
Peak Time: ${metric.peakTime / 1_000_000}ms
Call Count: ${metric.callCount}
""".trimIndent())
}
}
fun generatePerformanceReport(): String {
return buildString {
appendLine("GPU Performance Report")
appendLine("====================")
appendLine("Frame Statistics:")
appendLine("Average FPS: ${1_000_000_000.0 / frameTimeHistory.average()}")
appendLine("Frame Time: ${frameTimeHistory.average() / 1_000_000}ms")
appendLine("\nOperation Statistics:")
metrics.forEach { (name, metric) ->
appendLine("$name:")
appendLine(" Average Time: ${metric.totalTime / metric.callCount / 1_000_000}ms")
appendLine(" Peak Time: ${metric.peakTime / 1_000_000}ms")
appendLine(" Call Count: ${metric.callCount}")
}
}
}
}
Thermal Management
// iOS - GPU Thermal Management
class GPUThermalManager {
private let device: MTLDevice
private var thermalState: MTLDeviceThermalState = .nominal
private var thermalStateCallback: ((MTLDeviceThermalState) -> Void)?
init(device: MTLDevice) {
self.device = device
setupThermalMonitoring()
}
private func setupThermalMonitoring() {
NotificationCenter.default.addObserver(
self,
selector: #selector(thermalStateChanged),
name: .MTLDeviceThermalStateDidChange,
object: device
)
}
@objc private func thermalStateChanged(_ notification: Notification) {
thermalState = device.thermalState
thermalStateCallback?(thermalState)
switch thermalState {
case .nominal:
Log.info("GPU thermal state: Nominal")
case .fair:
Log.warning("GPU thermal state: Fair - Consider reducing workload")
case .serious:
Log.error("GPU thermal state: Serious - Reduce workload immediately")
case .critical:
Log.error("GPU thermal state: Critical - Stop GPU operations")
@unknown default:
Log.error("Unknown GPU thermal state")
}
}
func setThermalStateCallback(_ callback: @escaping (MTLDeviceThermalState) -> Void) {
thermalStateCallback = callback
}
func adjustWorkloadForThermalState() -> WorkloadAdjustment {
switch thermalState {
case .nominal:
return .full
case .fair:
return .reduced
case .serious:
return .minimal
case .critical:
return .none
@unknown default:
return .reduced
}
}
}
enum WorkloadAdjustment {
case full
case reduced
case minimal
case none
}
Advanced Optimization Techniques
Pipeline State Caching
// Android - Pipeline State Caching
class PipelineStateCache {
private val cache = LruCache<String, PipelineState>(10)
private val pipelineStates = mutableMapOf<String, PipelineState>()
data class PipelineState(
val vertexShader: String,
val fragmentShader: String,
val blendState: BlendState,
val depthState: DepthState
)
fun getOrCreatePipelineState(
vertexShader: String,
fragmentShader: String,
blendState: BlendState,
depthState: DepthState
): PipelineState {
val key = generatePipelineKey(vertexShader, fragmentShader, blendState, depthState)
return pipelineStates.getOrPut(key) {
createPipelineState(vertexShader, fragmentShader, blendState, depthState)
}
}
private fun generatePipelineKey(
vertexShader: String,
fragmentShader: String,
blendState: BlendState,
depthState: DepthState
): String {
return "$vertexShader|$fragmentShader|$blendState|$depthState"
}
private fun createPipelineState(
vertexShader: String,
fragmentShader: String,
blendState: BlendState,
depthState: DepthState
): PipelineState {
// Create and compile pipeline state
return PipelineState(vertexShader, fragmentShader, blendState, depthState)
}
}
Memory Pool Management
// iOS - Advanced Memory Pool Management
class AdvancedMemoryPool {
private let device: MTLDevice
private var bufferPools: [Int: [MTLBuffer]] = [:]
private let maxPoolSize = 10
init(device: MTLDevice) {
self.device = device
}
func getBuffer(size: Int, options: MTLResourceOptions = []) -> MTLBuffer? {
let pool = bufferPools[size] ?? []
if let buffer = pool.first {
bufferPools[size] = Array(pool.dropFirst())
return buffer
}
return device.makeBuffer(length: size, options: options)
}
func returnBuffer(_ buffer: MTLBuffer) {
let size = buffer.length
var pool = bufferPools[size] ?? []
if pool.count < maxPoolSize {
pool.append(buffer)
bufferPools[size] = pool
}
}
func clearPools() {
bufferPools.removeAll()
}
func getPoolStats() -> [String: Int] {
return bufferPools.mapValues { $0.count }
}
}
Best Practices for Advanced GPU Programming
Pipeline State Management
- Cache pipeline states
- Minimize state changes
- Use state objects efficiently
Memory Optimization
- Implement buffer pools
- Use appropriate memory types
- Monitor memory usage
Performance Monitoring
- Track frame times
- Monitor thermal state
- Profile GPU operations
Advanced Features
- Use compute shaders
- Implement parallel processing
- Optimize for specific hardware
Error Handling
- Implement proper fallbacks
- Handle thermal throttling
- Monitor GPU errors
Advanced GPU programming requires careful consideration of performance, memory management, and hardware capabilities. By following these best practices and implementing advanced features appropriately, developers can create high-performance mobile applications that make efficient use of GPU resources.