Chapter 11.4: Capacity Planning
Capacity Planning is essential for ensuring systems can handle current and future load demands while optimizing costs and maintaining performance standards.
1. Capacity Planning Fundamentals
Capacity Planning Process
yaml
capacity_planning_process:
data_collection:
- current_usage_metrics
- historical_performance_data
- business_growth_projections
- seasonal_patterns
- traffic_forecasts
analysis:
- trend_analysis
- peak_load_identification
- bottleneck_detection
- resource_utilization_patterns
- cost_analysis
modeling:
- capacity_models
- growth_projections
- scenario_planning
- what_if_analysis
- load_testing_results
planning:
- resource_requirements
- scaling_strategies
- timeline_planning
- budget_allocation
- risk_assessment
implementation:
- resource_provisioning
- infrastructure_scaling
- monitoring_setup
- validation_testing
- documentation_updates
Capacity Metrics Framework
java
@Component
public class CapacityMetricsCollector {
private final MetricsRegistry metricsRegistry;
private final ResourceMonitoringService resourceMonitoringService;
private final PerformanceMonitoringService performanceMonitoringService;
public CapacityMetrics collectCurrentCapacityMetrics(String service) {
return CapacityMetrics.builder()
.service(service)
.timestamp(Instant.now())
.resourceUtilization(collectResourceUtilization(service))
.performanceMetrics(collectPerformanceMetrics(service))
.throughputMetrics(collectThroughputMetrics(service))
.concurrencyMetrics(collectConcurrencyMetrics(service))
.build();
}
private ResourceUtilization collectResourceUtilization(String service) {
return ResourceUtilization.builder()
.cpuUsage(resourceMonitoringService.getCpuUsage(service))
.memoryUsage(resourceMonitoringService.getMemoryUsage(service))
.diskUsage(resourceMonitoringService.getDiskUsage(service))
.networkUtilization(resourceMonitoringService.getNetworkUtilization(service))
.connectionPools(resourceMonitoringService.getConnectionPoolStats(service))
.threadPools(resourceMonitoringService.getThreadPoolStats(service))
.build();
}
private PerformanceMetrics collectPerformanceMetrics(String service) {
return PerformanceMetrics.builder()
.responseTime(performanceMonitoringService.getResponseTimeStats(service))
.errorRate(performanceMonitoringService.getErrorRate(service))
.availability(performanceMonitoringService.getAvailability(service))
.queueDepth(performanceMonitoringService.getQueueDepth(service))
.latencyPercentiles(performanceMonitoringService.getLatencyPercentiles(service))
.build();
}
private ThroughputMetrics collectThroughputMetrics(String service) {
return ThroughputMetrics.builder()
.requestsPerSecond(getThroughputMetric(service, "requests_per_second"))
.transactionsPerSecond(getThroughputMetric(service, "transactions_per_second"))
.messagesPerSecond(getThroughputMetric(service, "messages_per_second"))
.dataProcessedPerSecond(getThroughputMetric(service, "data_processed_per_second"))
.build();
}
private ConcurrencyMetrics collectConcurrencyMetrics(String service) {
return ConcurrencyMetrics.builder()
.activeConnections(metricsRegistry.getGauge(service + "_active_connections").getValue())
.concurrentUsers(metricsRegistry.getGauge(service + "_concurrent_users").getValue())
.activeThreads(metricsRegistry.getGauge(service + "_active_threads").getValue())
.queuedRequests(metricsRegistry.getGauge(service + "_queued_requests").getValue())
.build();
}
}
2. Historical Analysis and Trend Prediction
Historical Data Analysis Service
java
@Service
@Slf4j
public class HistoricalAnalysisService {
private final MetricsRepository metricsRepository;
private final TrendAnalysisEngine trendAnalysisEngine;
private final SeasonalPatternDetector seasonalDetector;
private final AnomalyDetectionService anomalyDetectionService;
public HistoricalAnalysisReport analyzeHistoricalData(String service, Duration period) {
LocalDateTime endTime = LocalDateTime.now();
LocalDateTime startTime = endTime.minus(period);
// Collect historical data
List<CapacityMetrics> historicalMetrics = metricsRepository
.findByServiceAndTimestampBetween(service, startTime, endTime);
if (historicalMetrics.isEmpty()) {
throw new InsufficientDataException("No historical data available for service: " + service);
}
// Analyze trends
TrendAnalysisResult trendAnalysis = trendAnalysisEngine.analyzeTrends(historicalMetrics);
// Detect seasonal patterns
SeasonalPatterns seasonalPatterns = seasonalDetector.detectPatterns(historicalMetrics);
// Identify anomalies
List<CapacityAnomaly> anomalies = anomalyDetectionService
.detectCapacityAnomalies(historicalMetrics);
// Calculate growth rates
GrowthRates growthRates = calculateGrowthRates(historicalMetrics);
// Identify peak periods
List<PeakPeriod> peakPeriods = identifyPeakPeriods(historicalMetrics);
// Analyze resource utilization patterns
ResourceUtilizationPatterns utilizationPatterns =
analyzeUtilizationPatterns(historicalMetrics);
return HistoricalAnalysisReport.builder()
.service(service)
.analysisDate(LocalDateTime.now())
.dataPeriod(period)
.dataPoints(historicalMetrics.size())
.trendAnalysis(trendAnalysis)
.seasonalPatterns(seasonalPatterns)
.anomalies(anomalies)
.growthRates(growthRates)
.peakPeriods(peakPeriods)
.utilizationPatterns(utilizationPatterns)
.build();
}
private GrowthRates calculateGrowthRates(List<CapacityMetrics> metrics) {
if (metrics.size() < 2) {
return GrowthRates.noData();
}
// Sort metrics by timestamp
List<CapacityMetrics> sortedMetrics = metrics.stream()
.sorted(Comparator.comparing(CapacityMetrics::getTimestamp))
.collect(Collectors.toList());
CapacityMetrics earliest = sortedMetrics.get(0);
CapacityMetrics latest = sortedMetrics.get(sortedMetrics.size() - 1);
Duration timeDiff = Duration.between(earliest.getTimestamp(), latest.getTimestamp());
double timeFactor = timeDiff.toDays() / 365.0; // Annualized growth rate
return GrowthRates.builder()
.throughputGrowthRate(calculateGrowthRate(
earliest.getThroughputMetrics().getRequestsPerSecond(),
latest.getThroughputMetrics().getRequestsPerSecond(),
timeFactor))
.cpuUsageGrowthRate(calculateGrowthRate(
earliest.getResourceUtilization().getCpuUsage().getAverage(),
latest.getResourceUtilization().getCpuUsage().getAverage(),
timeFactor))
.memoryUsageGrowthRate(calculateGrowthRate(
earliest.getResourceUtilization().getMemoryUsage().getAverage(),
latest.getResourceUtilization().getMemoryUsage().getAverage(),
timeFactor))
.responseTimeGrowthRate(calculateGrowthRate(
earliest.getPerformanceMetrics().getResponseTime().getAverage(),
latest.getPerformanceMetrics().getResponseTime().getAverage(),
timeFactor))
.build();
}
private double calculateGrowthRate(double startValue, double endValue, double timeFactor) {
if (startValue == 0) return 0;
return (Math.pow(endValue / startValue, 1.0 / timeFactor) - 1) * 100;
}
private List<PeakPeriod> identifyPeakPeriods(List<CapacityMetrics> metrics) {
List<PeakPeriod> peakPeriods = new ArrayList<>();
// Calculate rolling average and identify periods significantly above average
int windowSize = Math.min(24, metrics.size() / 10); // 24-hour windows or 10% of data
double threshold = 1.5; // 50% above average
for (int i = windowSize; i < metrics.size() - windowSize; i++) {
double windowAverage = calculateWindowAverage(metrics, i - windowSize, i + windowSize);
double currentValue = getCurrentLoadValue(metrics.get(i));
if (currentValue > windowAverage * threshold) {
PeakPeriod peak = identifyPeakPeriod(metrics, i);
if (peak != null && !overlapsWithExistingPeak(peakPeriods, peak)) {
peakPeriods.add(peak);
}
}
}
return peakPeriods.stream()
.sorted(Comparator.comparing(PeakPeriod::getStartTime))
.collect(Collectors.toList());
}
}
Machine Learning-based Forecasting
java
@Service
public class CapacityForecastingService {
private final TimeSeriesForecaster timeSeriesForecaster;
private final SeasonalForecastEngine seasonalForecaster;
private final RegressionAnalysisService regressionService;
private final BusinessGrowthProjectionService businessProjectionService;
public CapacityForecast generateForecast(String service, Duration forecastPeriod) {
// Collect historical data
List<CapacityMetrics> historicalData = getHistoricalData(service, Duration.ofDays(365));
if (historicalData.size() < 30) {
throw new InsufficientDataException("Need at least 30 data points for forecasting");
}
// Generate time series forecasts
TimeSeriesForecast throughputForecast = forecastThroughput(historicalData, forecastPeriod);
TimeSeriesForecast resourceForecast = forecastResourceUsage(historicalData, forecastPeriod);
// Apply seasonal adjustments
SeasonalAdjustments seasonalAdjustments = seasonalForecaster
.calculateSeasonalAdjustments(historicalData, forecastPeriod);
// Incorporate business growth projections
BusinessGrowthProjection businessGrowth = businessProjectionService
.getGrowthProjection(service, forecastPeriod);
// Generate scenario-based forecasts
List<CapacityScenario> scenarios = generateCapacityScenarios(
historicalData, throughputForecast, resourceForecast,
seasonalAdjustments, businessGrowth);
// Calculate confidence intervals
ConfidenceIntervals confidenceIntervals = calculateConfidenceIntervals(
scenarios, forecastPeriod);
return CapacityForecast.builder()
.service(service)
.forecastDate(LocalDateTime.now())
.forecastPeriod(forecastPeriod)
.baselineForecast(scenarios.get(0)) // Conservative scenario
.scenarios(scenarios)
.confidenceIntervals(confidenceIntervals)
.methodology(ForecastMethodology.ML_HYBRID)
.dataQuality(assessDataQuality(historicalData))
.build();
}
private TimeSeriesForecast forecastThroughput(List<CapacityMetrics> historicalData,
Duration forecastPeriod) {
// Extract throughput time series
List<TimeSeriesDataPoint> throughputSeries = extractThroughputSeries(historicalData);
// Apply ARIMA or Prophet forecasting
return timeSeriesForecaster.forecast(throughputSeries, forecastPeriod);
}
private TimeSeriesForecast forecastResourceUsage(List<CapacityMetrics> historicalData,
Duration forecastPeriod) {
// Extract resource usage time series
List<TimeSeriesDataPoint> resourceSeries = extractResourceUsageSeries(historicalData);
// Use ensemble forecasting (ARIMA + Prophet + Linear Regression)
List<TimeSeriesForecast> individualForecasts = List.of(
timeSeriesForecaster.forecastWithARIMA(resourceSeries, forecastPeriod),
timeSeriesForecaster.forecastWithProphet(resourceSeries, forecastPeriod),
regressionService.forecastWithLinearRegression(resourceSeries, forecastPeriod)
);
// Combine forecasts using weighted average
return combineForecasts(individualForecasts);
}
private List<CapacityScenario> generateCapacityScenarios(
List<CapacityMetrics> historicalData,
TimeSeriesForecast throughputForecast,
TimeSeriesForecast resourceForecast,
SeasonalAdjustments seasonalAdjustments,
BusinessGrowthProjection businessGrowth) {
List<CapacityScenario> scenarios = new ArrayList<>();
// Conservative scenario (10th percentile)
scenarios.add(createScenario("Conservative", 0.1,
throughputForecast, resourceForecast, seasonalAdjustments, businessGrowth));
// Expected scenario (50th percentile)
scenarios.add(createScenario("Expected", 0.5,
throughputForecast, resourceForecast, seasonalAdjustments, businessGrowth));
// Optimistic scenario (90th percentile)
scenarios.add(createScenario("Optimistic", 0.9,
throughputForecast, resourceForecast, seasonalAdjustments, businessGrowth));
// High growth scenario (Business driven)
scenarios.add(createHighGrowthScenario(
throughputForecast, resourceForecast, seasonalAdjustments, businessGrowth));
return scenarios;
}
private CapacityScenario createScenario(String name, double percentile,
TimeSeriesForecast throughputForecast,
TimeSeriesForecast resourceForecast,
SeasonalAdjustments seasonalAdjustments,
BusinessGrowthProjection businessGrowth) {
return CapacityScenario.builder()
.name(name)
.percentile(percentile)
.throughputProjection(adjustThroughputProjection(throughputForecast, percentile,
seasonalAdjustments, businessGrowth))
.resourceProjection(adjustResourceProjection(resourceForecast, percentile,
seasonalAdjustments))
.peakLoadMultiplier(calculatePeakLoadMultiplier(percentile))
.confidence(calculateScenarioConfidence(percentile))
.build();
}
}
3. Load Testing and Performance Validation
Load Testing Framework
java
@Service
@Slf4j
public class LoadTestingService {
private final LoadTestExecutor loadTestExecutor;
private final PerformanceAnalyzer performanceAnalyzer;
private final CapacityModelValidator capacityValidator;
private final TestResultsRepository testResultsRepository;
public LoadTestResults executeCapacityValidationTest(CapacityTestPlan testPlan) {
log.info("Starting capacity validation test: {}", testPlan.getName());
// Pre-test system validation
SystemState preTestState = captureSystemState(testPlan.getTargetService());
try {
// Execute load test phases
List<LoadTestPhaseResult> phaseResults = new ArrayList<>();
for (LoadTestPhase phase : testPlan.getPhases()) {
LoadTestPhaseResult phaseResult = executeLoadTestPhase(phase);
phaseResults.add(phaseResult);
// Check if test should continue
if (!shouldContinueTest(phaseResult, testPlan.getFailureCriteria())) {
break;
}
}
// Post-test system validation
SystemState postTestState = captureSystemState(testPlan.getTargetService());
// Analyze results
LoadTestAnalysis analysis = performanceAnalyzer.analyzeResults(
phaseResults, preTestState, postTestState);
// Validate capacity model
CapacityModelValidation modelValidation = capacityValidator
.validateModel(testPlan.getCapacityModel(), analysis);
LoadTestResults results = LoadTestResults.builder()
.testPlan(testPlan)
.executionDate(LocalDateTime.now())
.phaseResults(phaseResults)
.preTestState(preTestState)
.postTestState(postTestState)
.analysis(analysis)
.modelValidation(modelValidation)
.success(determineTestSuccess(phaseResults, analysis))
.build();
// Store results
testResultsRepository.save(results);
return results;
} catch (Exception e) {
log.error("Load test execution failed: {}", e.getMessage(), e);
throw new LoadTestExecutionException("Failed to execute load test", e);
}
}
private LoadTestPhaseResult executeLoadTestPhase(LoadTestPhase phase) {
log.info("Executing load test phase: {} - Target Load: {} users",
phase.getName(), phase.getTargetLoad());
LoadTestPhaseResult.Builder resultBuilder = LoadTestPhaseResult.builder()
.phaseName(phase.getName())
.startTime(Instant.now())
.targetLoad(phase.getTargetLoad())
.duration(phase.getDuration());
try {
// Configure load generators
loadTestExecutor.configureLoadGenerators(phase.getLoadConfiguration());
// Start load generation
LoadGenerationContext context = loadTestExecutor.startLoadGeneration(phase);
// Monitor system during test
List<SystemSnapshot> snapshots = monitorSystemDuringTest(phase);
resultBuilder.systemSnapshots(snapshots);
// Wait for phase completion
LoadGenerationResults genResults = waitForPhaseCompletion(context, phase);
resultBuilder.loadGenerationResults(genResults);
// Analyze phase performance
PhasePerformanceMetrics metrics = analyzePhasePerformance(snapshots, genResults);
resultBuilder.performanceMetrics(metrics);
return resultBuilder
.endTime(Instant.now())
.success(true)
.build();
} catch (Exception e) {
log.error("Load test phase {} failed: {}", phase.getName(), e.getMessage());
return resultBuilder
.endTime(Instant.now())
.success(false)
.errorMessage(e.getMessage())
.build();
}
}
private List<SystemSnapshot> monitorSystemDuringTest(LoadTestPhase phase) {
List<SystemSnapshot> snapshots = new ArrayList<>();
long snapshotInterval = phase.getMonitoringInterval().toMillis();
long phaseEndTime = System.currentTimeMillis() + phase.getDuration().toMillis();
while (System.currentTimeMillis() < phaseEndTime) {
try {
SystemSnapshot snapshot = captureSystemSnapshot(phase.getTargetService());
snapshots.add(snapshot);
// Check for performance degradation
if (detectPerformanceDegradation(snapshot, phase.getThresholds())) {
log.warn("Performance degradation detected during phase: {}", phase.getName());
}
Thread.sleep(snapshotInterval);
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
break;
}
}
return snapshots;
}
public CapacityTestPlan generateOptimalTestPlan(String service,
CapacityRequirements requirements) {
// Analyze current capacity
CapacityMetrics currentCapacity = getCurrentCapacity(service);
// Calculate test phases based on requirements
List<LoadTestPhase> phases = calculateTestPhases(currentCapacity, requirements);
// Define performance thresholds
PerformanceThresholds thresholds = definePerformanceThresholds(requirements);
// Set failure criteria
TestFailureCriteria failureCriteria = defineFailureCriteria(requirements);
return CapacityTestPlan.builder()
.name("Capacity Validation Test - " + service)
.targetService(service)
.phases(phases)
.thresholds(thresholds)
.failureCriteria(failureCriteria)
.estimatedDuration(calculateTotalDuration(phases))
.build();
}
private List<LoadTestPhase> calculateTestPhases(CapacityMetrics currentCapacity,
CapacityRequirements requirements) {
List<LoadTestPhase> phases = new ArrayList<>();
// Baseline phase
phases.add(LoadTestPhase.builder()
.name("Baseline")
.targetLoad(getCurrentLoad(currentCapacity))
.duration(Duration.ofMinutes(10))
.rampUpTime(Duration.ofMinutes(2))
.build());
// Incremental load phases
double currentLoad = getCurrentLoad(currentCapacity);
double targetLoad = requirements.getTargetLoad();
double increment = (targetLoad - currentLoad) / 5; // 5 incremental phases
for (int i = 1; i <= 5; i++) {
double phaseLoad = currentLoad + (increment * i);
phases.add(LoadTestPhase.builder()
.name("Phase " + i)
.targetLoad(phaseLoad)
.duration(Duration.ofMinutes(15))
.rampUpTime(Duration.ofMinutes(3))
.build());
}
// Peak load phase
phases.add(LoadTestPhase.builder()
.name("Peak Load")
.targetLoad(requirements.getPeakLoad())
.duration(Duration.ofMinutes(20))
.rampUpTime(Duration.ofMinutes(5))
.build());
// Stress test phase
phases.add(LoadTestPhase.builder()
.name("Stress Test")
.targetLoad(requirements.getStressTestLoad())
.duration(Duration.ofMinutes(10))
.rampUpTime(Duration.ofMinutes(2))
.build());
return phases;
}
}
Performance Benchmarking
java
@Service
public class PerformanceBenchmarkingService {
private final BenchmarkRepository benchmarkRepository;
private final PerformanceMetricsCollector metricsCollector;
private final BenchmarkComparator benchmarkComparator;
public BenchmarkResults runPerformanceBenchmark(BenchmarkConfiguration config) {
log.info("Starting performance benchmark: {}", config.getName());
// Setup benchmark environment
BenchmarkEnvironment environment = setupBenchmarkEnvironment(config);
try {
// Run benchmark scenarios
List<BenchmarkScenarioResult> scenarioResults = new ArrayList<>();
for (BenchmarkScenario scenario : config.getScenarios()) {
BenchmarkScenarioResult result = runBenchmarkScenario(scenario, environment);
scenarioResults.add(result);
}
// Aggregate results
BenchmarkSummary summary = aggregateBenchmarkResults(scenarioResults);
// Compare with baselines
BenchmarkComparison comparison = comparewithBaselines(summary, config);
BenchmarkResults results = BenchmarkResults.builder()
.configuration(config)
.environment(environment)
.scenarioResults(scenarioResults)
.summary(summary)
.comparison(comparison)
.executionDate(LocalDateTime.now())
.build();
// Store results
benchmarkRepository.save(results);
return results;
} finally {
cleanupBenchmarkEnvironment(environment);
}
}
private BenchmarkScenarioResult runBenchmarkScenario(BenchmarkScenario scenario,
BenchmarkEnvironment environment) {
log.info("Running benchmark scenario: {}", scenario.getName());
// Pre-scenario measurements
PerformanceBaseline preScenarioBaseline = capturePerformanceBaseline(environment);
// Execute scenario
ScenarioExecution execution = executeScenario(scenario, environment);
// Post-scenario measurements
PerformanceBaseline postScenarioBaseline = capturePerformanceBaseline(environment);
// Collect detailed metrics
DetailedPerformanceMetrics detailedMetrics =
metricsCollector.collectDetailedMetrics(execution);
return BenchmarkScenarioResult.builder()
.scenario(scenario)
.execution(execution)
.preScenarioBaseline(preScenarioBaseline)
.postScenarioBaseline(postScenarioBaseline)
.detailedMetrics(detailedMetrics)
.build();
}
private ScenarioExecution executeScenario(BenchmarkScenario scenario,
BenchmarkEnvironment environment) {
ScenarioExecution.Builder executionBuilder = ScenarioExecution.builder()
.scenario(scenario)
.startTime(Instant.now());
try {
// Setup scenario-specific configuration
configureScenarioEnvironment(scenario, environment);
// Execute workload
WorkloadExecutionResults workloadResults = executeWorkload(scenario.getWorkload());
executionBuilder.workloadResults(workloadResults);
// Monitor system behavior
SystemBehaviorMetrics behaviorMetrics = monitorSystemBehavior(scenario);
executionBuilder.behaviorMetrics(behaviorMetrics);
return executionBuilder
.endTime(Instant.now())
.success(true)
.build();
} catch (Exception e) {
log.error("Scenario execution failed: {}", e.getMessage());
return executionBuilder
.endTime(Instant.now())
.success(false)
.errorMessage(e.getMessage())
.build();
}
}
public BenchmarkTrends analyzeBenchmarkTrends(String service, Duration period) {
List<BenchmarkResults> historicalBenchmarks = benchmarkRepository
.findByServiceAndExecutionDateAfter(service, LocalDateTime.now().minus(period));
if (historicalBenchmarks.size() < 2) {
return BenchmarkTrends.insufficientData();
}
// Analyze throughput trends
ThroughputTrend throughputTrend = analyzeThroughputTrend(historicalBenchmarks);
// Analyze latency trends
LatencyTrend latencyTrend = analyzeLatencyTrend(historicalBenchmarks);
// Analyze resource utilization trends
ResourceUtilizationTrend resourceTrend = analyzeResourceTrend(historicalBenchmarks);
// Analyze scalability trends
ScalabilityTrend scalabilityTrend = analyzeScalabilityTrend(historicalBenchmarks);
return BenchmarkTrends.builder()
.service(service)
.period(period)
.dataPoints(historicalBenchmarks.size())
.throughputTrend(throughputTrend)
.latencyTrend(latencyTrend)
.resourceTrend(resourceTrend)
.scalabilityTrend(scalabilityTrend)
.trendDirection(determineTrendDirection(throughputTrend, latencyTrend))
.build();
}
}
4. Proactive Scaling and Resource Management
Auto-Scaling Strategy
java
@Service
@Slf4j
public class ProactiveScalingService {
private final CapacityForecastingService forecastingService;
private final ResourceProvisioningService provisioningService;
private final MetricsCollector metricsCollector;
private final ScalingPolicyRepository scalingPolicyRepository;
private final CostOptimizationService costOptimizationService;
@Scheduled(fixedDelay = 300000) // Check every 5 minutes
public void executeProactiveScaling() {
List<ScalingPolicy> activePolicies = scalingPolicyRepository.findByStatus(PolicyStatus.ACTIVE);
for (ScalingPolicy policy : activePolicies) {
try {
evaluateScalingPolicy(policy);
} catch (Exception e) {
log.error("Error evaluating scaling policy {}: {}", policy.getName(), e.getMessage());
}
}
}
private void evaluateScalingPolicy(ScalingPolicy policy) {
String service = policy.getTargetService();
// Get current metrics
CapacityMetrics currentMetrics = metricsCollector.collectCurrentCapacityMetrics(service);
// Get forecast for the scaling horizon
CapacityForecast forecast = forecastingService.generateForecast(
service, policy.getScalingHorizon());
// Evaluate scaling triggers
ScalingDecision decision = evaluateScalingTriggers(policy, currentMetrics, forecast);
if (decision.shouldScale()) {
executeScalingAction(policy, decision);
}
}
private ScalingDecision evaluateScalingTriggers(ScalingPolicy policy,
CapacityMetrics currentMetrics,
CapacityForecast forecast) {
ScalingDecision.Builder decisionBuilder = ScalingDecision.builder()
.policy(policy)
.evaluationTime(Instant.now());
// Check current utilization triggers
if (isCurrentUtilizationTriggerMet(policy, currentMetrics)) {
decisionBuilder.triggerType(ScalingTriggerType.CURRENT_UTILIZATION)
.scaleDirection(determineScaleDirection(policy, currentMetrics))
.confidence(0.9);
}
// Check predictive triggers
else if (isPredictiveTriggerMet(policy, forecast)) {
decisionBuilder.triggerType(ScalingTriggerType.PREDICTIVE)
.scaleDirection(ScalingDirection.UP)
.confidence(forecast.getConfidenceIntervals().getConfidence());
}
// Check scheduled triggers
else if (isScheduledTriggerMet(policy)) {
decisionBuilder.triggerType(ScalingTriggerType.SCHEDULED)
.scaleDirection(ScalingDirection.UP)
.confidence(1.0);
}
// Calculate optimal scale amount
if (decisionBuilder.build().shouldScale()) {
int scaleAmount = calculateOptimalScaleAmount(policy, currentMetrics, forecast);
decisionBuilder.scaleAmount(scaleAmount);
}
return decisionBuilder.build();
}
private void executeScalingAction(ScalingPolicy policy, ScalingDecision decision) {
String service = policy.getTargetService();
log.info("Executing scaling action for service {}: {} by {} units",
service, decision.getScaleDirection(), decision.getScaleAmount());
try {
// Check scaling constraints
if (!validateScalingConstraints(policy, decision)) {
log.warn("Scaling action blocked by constraints for service: {}", service);
return;
}
// Calculate cost impact
CostImpact costImpact = costOptimizationService.calculateScalingCost(policy, decision);
// Execute scaling if cost is acceptable
if (costImpact.isAcceptable()) {
ScalingResult result = provisioningService.executeScaling(policy, decision);
// Record scaling action
recordScalingAction(policy, decision, result, costImpact);
// Monitor scaling results
scheduleScalingValidation(policy, decision, result);
} else {
log.warn("Scaling action rejected due to cost impact for service: {}", service);
}
} catch (Exception e) {
log.error("Failed to execute scaling action for service {}: {}", service, e.getMessage());
handleScalingFailure(policy, decision, e);
}
}
private int calculateOptimalScaleAmount(ScalingPolicy policy,
CapacityMetrics currentMetrics,
CapacityForecast forecast) {
if (policy.getScalingStrategy() == ScalingStrategy.CONSERVATIVE) {
return calculateConservativeScaling(policy, currentMetrics, forecast);
} else if (policy.getScalingStrategy() == ScalingStrategy.AGGRESSIVE) {
return calculateAggressiveScaling(policy, currentMetrics, forecast);
} else {
return calculateBalancedScaling(policy, currentMetrics, forecast);
}
}
private int calculateBalancedScaling(ScalingPolicy policy,
CapacityMetrics currentMetrics,
CapacityForecast forecast) {
// Calculate based on forecast peak load
double forecastPeak = forecast.getScenarios().stream()
.mapToDouble(scenario -> scenario.getThroughputProjection().getPeakValue())
.max()
.orElse(0.0);
// Current capacity
double currentCapacity = getCurrentThroughputCapacity(currentMetrics);
// Target utilization
double targetUtilization = policy.getTargetUtilization();
// Required capacity with buffer
double requiredCapacity = forecastPeak / targetUtilization * 1.1; // 10% buffer
// Calculate scale amount
if (requiredCapacity > currentCapacity) {
double scaleFactor = requiredCapacity / currentCapacity;
return (int) Math.ceil(scaleFactor) - 1; // Subtract current instance
}
return 0;
}
@Async
public void scheduleScalingValidation(ScalingPolicy policy,
ScalingDecision decision,
ScalingResult result) {
// Wait for scaling to complete
try {
Thread.sleep(policy.getScalingCompletionTime().toMillis());
// Validate scaling results
ScalingValidationResult validation = validateScalingResults(policy, decision, result);
// Take corrective action if needed
if (!validation.isSuccessful()) {
handleScalingValidationFailure(policy, decision, result, validation);
}
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
log.warn("Scaling validation interrupted for service: {}", policy.getTargetService());
}
}
}
Cost-Aware Capacity Planning
java
@Service
public class CostAwareCapacityPlanningService {
private final CostModelingService costModelingService;
private final ResourcePricingService pricingService;
private final BudgetConstraintService budgetService;
private final CostOptimizationEngine optimizationEngine;
public CostOptimizedCapacityPlan generateCostOptimizedPlan(
CapacityRequirements requirements,
BudgetConstraints budgetConstraints) {
// Generate multiple capacity scenarios
List<CapacityScenario> scenarios = generateCapacityScenarios(requirements);
// Calculate costs for each scenario
List<CostOptimizedScenario> costScenarios = scenarios.stream()
.map(scenario -> calculateScenarioCost(scenario, requirements))
.collect(Collectors.toList());
// Filter scenarios by budget constraints
List<CostOptimizedScenario> feasibleScenarios = costScenarios.stream()
.filter(scenario -> budgetService.isWithinBudget(scenario.getCost(), budgetConstraints))
.collect(Collectors.toList());
if (feasibleScenarios.isEmpty()) {
throw new BudgetConstraintException("No feasible scenarios within budget constraints");
}
// Optimize scenarios using multi-objective optimization
CostOptimizedScenario optimalScenario = optimizationEngine
.findOptimalScenario(feasibleScenarios, requirements, budgetConstraints);
// Generate implementation timeline
ImplementationTimeline timeline = generateImplementationTimeline(optimalScenario);
// Calculate ROI and TCO
ROIAnalysis roiAnalysis = calculateROI(optimalScenario, requirements);
TCOAnalysis tcoAnalysis = calculateTCO(optimalScenario, Duration.ofYears(3));
return CostOptimizedCapacityPlan.builder()
.requirements(requirements)
.budgetConstraints(budgetConstraints)
.optimalScenario(optimalScenario)
.alternativeScenarios(feasibleScenarios)
.implementationTimeline(timeline)
.roiAnalysis(roiAnalysis)
.tcoAnalysis(tcoAnalysis)
.generatedDate(LocalDateTime.now())
.build();
}
private CostOptimizedScenario calculateScenarioCost(CapacityScenario scenario,
CapacityRequirements requirements) {
// Calculate infrastructure costs
InfrastructureCost infraCost = costModelingService
.calculateInfrastructureCost(scenario.getResourceProjection());
// Calculate operational costs
OperationalCost operationalCost = costModelingService
.calculateOperationalCost(scenario, requirements);
// Calculate data transfer costs
DataTransferCost transferCost = costModelingService
.calculateDataTransferCost(scenario.getThroughputProjection());
// Calculate storage costs
StorageCost storageCost = costModelingService
.calculateStorageCost(scenario.getDataStorageProjection());
// Calculate total cost
TotalCost totalCost = TotalCost.builder()
.infrastructure(infraCost)
.operational(operationalCost)
.dataTransfer(transferCost)
.storage(storageCost)
.build();
return CostOptimizedScenario.builder()
.scenario(scenario)
.cost(totalCost)
.costPerformanceRatio(calculateCostPerformanceRatio(totalCost, scenario))
.costEfficiencyScore(calculateCostEfficiencyScore(totalCost, scenario))
.build();
}
public CostOptimizationRecommendations generateCostOptimizationRecommendations(
String service, Duration period) {
// Analyze current spending
CostAnalysis currentCosts = analyzeCcurrentCosts(service, period);
// Identify optimization opportunities
List<CostOptimizationOpportunity> opportunities =
identifyOptimizationOpportunities(service, currentCosts);
// Calculate potential savings
PotentialSavings potentialSavings = calculatePotentialSavings(opportunities);
// Prioritize recommendations
List<PrioritizedRecommendation> prioritizedRecommendations =
prioritizeRecommendations(opportunities, potentialSavings);
return CostOptimizationRecommendations.builder()
.service(service)
.analysisDate(LocalDateTime.now())
.currentCosts(currentCosts)
.opportunities(opportunities)
.potentialSavings(potentialSavings)
.recommendations(prioritizedRecommendations)
.implementationRoadmap(generateImplementationRoadmap(prioritizedRecommendations))
.build();
}
private List<CostOptimizationOpportunity> identifyOptimizationOpportunities(
String service, CostAnalysis currentCosts) {
List<CostOptimizationOpportunity> opportunities = new ArrayList<>();
// Right-sizing opportunities
opportunities.addAll(identifyRightSizingOpportunities(service, currentCosts));
// Reserved instance opportunities
opportunities.addAll(identifyReservedInstanceOpportunities(service, currentCosts));
// Spot instance opportunities
opportunities.addAll(identifySpotInstanceOpportunities(service, currentCosts));
// Storage optimization opportunities
opportunities.addAll(identifyStorageOptimizationOpportunities(service, currentCosts));
// Auto-scaling optimization opportunities
opportunities.addAll(identifyAutoScalingOptimizations(service, currentCosts));
// Architecture optimization opportunities
opportunities.addAll(identifyArchitectureOptimizations(service, currentCosts));
return opportunities;
}
}
Multi-Environment Capacity Coordination
yaml
# Multi-environment capacity coordination configuration
capacity_coordination:
environments:
production:
priority: 1
resource_allocation: 60%
scaling_policy: aggressive
cost_optimization: balanced
staging:
priority: 2
resource_allocation: 25%
scaling_policy: conservative
cost_optimization: aggressive
development:
priority: 3
resource_allocation: 15%
scaling_policy: manual
cost_optimization: aggressive
coordination_rules:
- if: production.cpu_usage > 80%
then: reduce_staging_resources_by: 20%
- if: production.memory_usage > 85%
then: reduce_development_resources_by: 30%
- if: budget_utilization > 90%
then: freeze_non_production_scaling
sharing_policies:
burst_capacity:
enabled: true
max_burst_duration: 2h
source_environments: [staging, development]
target_environment: production
resource_pooling:
enabled: true
shared_resources: [compute, storage]
allocation_strategy: dynamic
This comprehensive capacity planning framework provides the foundation for ensuring your systems can handle current and future demands while optimizing costs and maintaining performance standards. The integration of machine learning forecasting, proactive scaling, and cost optimization ensures efficient resource utilization across all environments.