Skip to content

Core Data Structures and Algorithms - System Design Context

Data Structures Diagram

Data Structures (Production Use Cases)

Array/List

  • Spring Framework dependency injection container
  • @Autowired List<Service> for multiple bean injection
  • Fixed-size vs dynamic arrays
  • Memory locality advantages

Linked List

  • LRU cache implementation
  • Queue structures in messaging systems
  • Spring Cloud Stream message handling
  • Insertion/deletion at O(1)

Hash Table/Map

  • Spring cache abstractions
  • ConcurrentHashMap for thread-safe operations
  • Distributed caching with Redis
  • O(1) average lookup time

Tree Structures

  • B-tree indices in databases
  • Trie structures for autocomplete features
  • Decision trees in business rules
  • Balanced trees for guaranteed performance

Graph Structures

  • Dependency graphs in Spring IoC container
  • Social networks
  • Recommendation systems
  • Circuit breaker state machines

Algorithms (Real-World Applications)

Search Algorithms

Sorting Algorithms

Caching Algorithms

  • LRU/LFU eviction policies
  • Write-through/write-back strategies
  • Distributed cache consistency
  • Cache replacement policies

Load Balancing

  • Round-robin algorithm
  • Weighted round-robin
  • Least connections algorithms in Spring Cloud LoadBalancer
  • Consistent hashing for distributed systems

Consensus Algorithms

  • Raft in distributed systems
  • Paxos for distributed consensus
  • Leader election in microservices
  • Byzantine fault tolerance

Performance Implications

Time Complexity

  • O(1) hash lookups in cache systems
  • O(log n) database index seeks
  • O(n log n) sorting operations
  • O(n²) nested loops to avoid

Space Complexity

  • Memory-efficient data structures
  • Garbage collection considerations
  • Off-heap storage strategies
  • Memory pools and object reuse

Distributed Systems

  • CAP theorem trade-offs
  • Eventual consistency models
  • Partitioning strategies
  • Network latency considerations

Distributed Systems Patterns

Consensus Algorithms

  • Raft: Leader-based consensus, log replication
  • Paxos: Byzantine fault tolerance, complex but robust
  • ZAB: ZooKeeper Atomic Broadcast, total ordering

Leader Election

  • ZooKeeper based leader election
  • etcd for service coordination
  • Custom implementation patterns
  • Split-brain prevention

Distributed Locking

  • Redis-based locks with expiration
  • Database locks for consistency
  • Optimistic vs pessimistic locking
  • Deadlock detection and prevention

Eventual Consistency

  • CRDTs (Conflict-free Replicated Data Types)
  • Vector clocks for causality tracking
  • Version vectors for conflict resolution
  • Gossip protocols for data propagation

Failure Detection

  • Heartbeat mechanism for liveness detection
  • Timeout strategies for failure detection
  • Phi accrual failure detector
  • Adaptive timeout algorithms

Scalability Patterns

Horizontal Scaling

  • Stateless services design
  • Shared-nothing architecture
  • Microservices decomposition
  • Database sharding strategies

Vertical Scaling

  • Resource optimization techniques
  • JVM tuning parameters
  • Hardware upgrade strategies
  • Performance bottleneck identification

Caching Strategies

  • Multi-level caching hierarchy
  • Cache invalidation strategies
  • Write-through vs write-behind
  • Cache stampede prevention

Database Scaling

  • Read replicas for read scaling
  • Sharding for write scaling
  • Partitioning strategies
  • Cross-shard query challenges

Message Queue

  • Asynchronous processing patterns
  • Back-pressure handling mechanisms
  • Message ordering guarantees
  • Dead letter queue handling

Algorithm Complexity Analysis

Common Operations

Data StructureAccessSearchInsertionDeletion
ArrayO(1)O(n)O(n)O(n)
Linked ListO(n)O(n)O(1)O(1)
Hash TableO(1)O(1)O(1)O(1)
Binary TreeO(log n)O(log n)O(log n)O(log n)
B-TreeO(log n)O(log n)O(log n)O(log n)

Sorting Algorithms

AlgorithmBest CaseAverage CaseWorst CaseSpace
Quick SortO(n log n)O(n log n)O(n²)O(log n)
Merge SortO(n log n)O(n log n)O(n log n)O(n)
Heap SortO(n log n)O(n log n)O(n log n)O(1)
Tim SortO(n)O(n log n)O(n log n)O(n)

Production Implementation Examples

LRU Cache Implementation

java
@Component
public class LRUCache<K, V> {
    private final int capacity;
    private final Map<K, Node<K, V>> cache;
    private final Node<K, V> head, tail;
    
    public LRUCache(int capacity) {
        this.capacity = capacity;
        this.cache = new ConcurrentHashMap<>();
        this.head = new Node<>();
        this.tail = new Node<>();
        head.next = tail;
        tail.prev = head;
    }
    
    // Implementation details...
}

Consistent Hashing for Load Balancing

java
@Component
public class ConsistentHashLoadBalancer {
    private final SortedMap<Integer, String> circle = new TreeMap<>();
    private final int virtualNodes = 100;
    
    public void addServer(String server) {
        for (int i = 0; i < virtualNodes; i++) {
            circle.put(hash(server + i), server);
        }
    }
    
    public String getServer(String key) {
        int hash = hash(key);
        SortedMap<Integer, String> tailMap = circle.tailMap(hash);
        return tailMap.isEmpty() ? circle.firstEntry().getValue() : tailMap.firstEntry().getValue();
    }
}

Memory Management

JVM Memory Optimization

  • Heap size tuning (-Xmx, -Xms)
  • Garbage collection algorithm selection
  • Off-heap storage for large datasets
  • Memory leak detection and prevention

Distributed Memory

  • Redis clustering for distributed cache
  • Hazelcast for in-memory data grid
  • Apache Ignite for distributed computing
  • Consistency vs performance trade-offs

Security Considerations

Algorithm Security

  • Cryptographic hash functions
  • Secure random number generation
  • Timing attack prevention
  • Side-channel attack mitigation

Data Structure Security

  • Input validation for data structures
  • Bounds checking for arrays
  • Hash collision attack prevention
  • Memory safety in native code

Distributed Systems Patterns

Created by Eren Demir.